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Context

At Statistics Canada, variance estimation for c@xplurveys is mainly carried out using replicatioethods. The
two replication methods which have been used inabedecade are the delete-one Primary Sampling(B8U)

jackknife and, more recently, the bootstrap. Asligat (2007) rightly points out there are severatiants of the
bootstrap introduced by Efron (1979) in the i.cdse which are being used in survey sampling antlave to be
clear which one is being referred to; at Statisi@@nada we use solely the Rao-Wu rescaling boptdta

production. Even though it was introduced in 1988(Rao and Wu (1988)), first implementations aeclionly in

the late 1990s. The Rao-Wu bootstrap is perfornmebdath with and without replacement designs foraluhi yields

sensible variance estimates for a variety of estirsancluding percentiles, a claim not matchedhwy delete-one
PSU jackknife. Because of this, surveys whichatlitirelied on the jackknife often make the switolthe bootstrap
when the occasion arises, like during a surveyesgh. The reader can get a good overview of wastieen tried
in survey sampling with regard to the bootstraprff@ust and Rao (1996), Shao (2003) and Lahiri (20D Rao-
Wu variant of the original bootstrap procedure ppealing to survey users because it is simple fgement, it

yields adequate variance estimates when the sasizgle are small (which is common with stratifiedigas) and it
comes in the form of bootstrap weights.

For any given methodology, making the transitiamfrtheory to practice is a challenge, and the Raobdbtstrap
is no exception. After several years of use atiSta¢ Canada, strange variance estimates werathedan some
surveys, mainly longitudinal surveys. These survays particularly challenging from a variance estion
standpoint because of the myriad ways one can @bridferences: cross-sectionally (or by wave/cyaay/or
longitudinally (or across waves/cyclesic. An in-depth investigation of the implementatidrategy used up to that
point unveiled several flaws which have since baddressed. The new implementation strategy refledistter
overall understanding of the bootstrap and theeisgshat may arise in variance estimation as we@uo theory to
practice.

Many of the issues we had to ponder and addrestdwequire too lengthy of a preamble to be mentibimethis
paper; in fact, they already have been documemtetid Statistics Canada working paper Girard (2QGi#) an
addendum in the later working paper Girat@l. (2009). (Either or both can be obtained by cdirigahe author.)
What we propose in this paper is to give a flavelwhat is involved in applying the Rao-Wu bootptta real
surveys by presenting some of the issues that misg through case studies. In the process we hieagetd collect
the known theoretical relevant results (which arattered in the literature) and also help the hoaytsuser with
their interpretation, hence to make the transitiom theory to practice smoother.

Case study |: The set up featuring Simple Random Sampling Without I&sgment (SRSWOR) with sampling
fraction f C Oand estimating the mean.

This first case study describes the most natuttihgefor the bootstrap introduced by Efron (1978)s as close to
the classic i.i.d. case we can get in a surveynget{The early writings of Bradley Efromg., Efron (1979) and
Efron (1981), are enlightening and ought to be f@aall bootstrap enthusiasts, as they providetgrnséghts into
the technique; the author’s favourite exposé isfEfind Lepage (1992).) To understand where the\VRawariant
comes from, it is important to revisit Efron’s bstap.

Suppose a sampof sizen has been obtained from a Simple Random Sample Réiacement (SRSWR) design
or equivalently, for all practical purposes, frolBRSWOR with sampling fractiori T O, and that the estimat¥



of the population mean gfwas obtained. Efron’s bootstrap is usually implated by selecting a large numliof
samples of sizen with replacement from the observed sample. (These samples are customarily called bootstrap
replicates.) In an ideal world we would be ablaise all bootstrap replicates and not Bsif them, but in practice
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we cannot afford it. Indeed, a standard combinesoargument shows that there {re J distinct bootstrap

replicates to be obtained from a sample of sizehich usually far exceeds what computers can leaefficiently.
(To give an idea of its magnitude, observe thah wit50 this number has 28 digits.)

Using standard SRSWR resulesy(, Result 3.3.4 in Sarndel al. (1992)) one can show that the following holds for
Efron’s bootstrap estimatoygoor :
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The underscript “BOOT” indicates that expectationl avariance are taken with respect to the bootsteappling
mechanism.

Thus, the bootstrap variance is not quite unbideedhe usual variance estimate of the mean, a inig®rtant
enough for some of the small sample sizes encaethtarsurvey sampling (mainly with stratified des) One can
describe the Rao-Wu rescaling bootstrap, introduse®ao and Wu (1988), as a way to achieve unbressdon
both fronts through a suitable linear transforniE&rbn’s estimator.e., find:

Y}R—W = ay soor + 5 2

such that:

Egoor ():/R—W |S) = ):/
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They also opened the door to re-sampling any numbef units and thus to the possibility of a choichiah
outperforms the traditional.

Note: Since the remainder of this paper is exchlgiabout the Rao-Wu rescaling bootstrap, we aneggto refer to
it hereinafter simply as the bootstrap.

Because in practicB is chosen to be much less th%n j the variance calculated is actually a Monte Carlo

approximation:

Veoor ():/BOOT |S) UVeoor (§/BOOT |S) = %bzlj,(yBOOT(b) _)2 (4)

It is important to realize that the choiceBvill affect the magnitude of the error introdudadhe ensuing estimate
Veoot by the bootstrap implementation. The only thingtthtops us in practice from taking a very laByés
computer efficiency of the ensuing calculationsd(&éime fact usually observed that the increasedigiogcin v is
not worth the additional replicates used). It iseiasting to put some of these things about thetshrap in

perspective by looking at the delete-one PSU jaif&kithe delete-one PSU jackknife is implementedadiyng out
in turn one unit at a time, and re-weighting appiately the remaining units; this yields in aljackknife replicates.



Unlessn is itself very large, one can usé jackknife replicates in practice, something wermndo with the
bootstrap as we just saw.

In practice, many surveys use as many as 500 ar £@90 replicates. (Given the size of the outfasf this is
typically the most we can afford while allowing thkemputation of variance estimates in a timely ifashwhen
needed.) This may appear large compared to whgpisally advocated in the i.i.d. case but we h&veonsider
multi-purpose surveys in which domain estimationiohhinvolves a subset only of the sampled unitéarge B
ensures stability over all attempted analyses. @he survey statisticians prefer (and have theri)xo custom-
fit B to the task at hand and refrain from adopting riversal” value forB. This is typically the case of surveys
which only have just a few and well-defined analgti objectivesi.e., their output tables are standard and
established in advance. In such a situation, fgivan sample and estimator, the survey statistifirah sets out a
small value forB, say 50, and computes the ensuing (main) variagtimate. They he/she augmeBtt say 100,
150 and so on, and plots the variance estimatesnalot as in Figure 1. Typically, a plateau emeges where it
begins is the number of replicates the surveyssiain ends up using in that specific contegt, for that one
sample and estimator.

53
5.2
5.1 \\
Variance 5 1 \
estimate 4.9

4.8 \

4.7
v
46 T T T T T T T T T T T
O O O O O O O O O O O O O
mn O mwW O W © 1 © 1 O 1 O
N OB N O N IO~ O N 1 K~ O
4 4 4 4 & N N N O

Number of replicates

Figure 1: Plotting the bootstrap variance estimédes given sample and estimator with ever indrepaumberB of replicates
until a plateau emerges; where the plateau begintbeleft is the number of replicatése( B=500) to be used ithat specific
context.

With regard to the value ah to choose, some hindsight is provided by the ¥foligp paper Rao, Wu and Yue
(1992) which introduces the so-called bootstrapghtsi. From a practical perspective, the initial Reo
methodology was not totally satisfactory becausgeiided a “one-piece” bootstrap estimator of theam and not
one which is built from the “weights up” as it isually the case in survey sampling. This is esfigcdigseful to
carry out domain estimation, nonresponse and praffecation methodologies, and obtain estimatethe median.
Rao, Wu and Yue (1992) show that one can expresbdbtstrap estimator for the mean (see equatibmf2Rao
and Wu (1988)) in the form:

f’BOOT(b) => Wy (K)yx /N (5)
k

provided theo™ bootstrap weight of uni W, (K) , are defined as:

W (K) = w(k){l— ,/ni_l + ‘/nﬂ_l%multb(k)} ©6)



The multiplicity factor mult, (k) indicates how many times uritwas chosen in the" replicate under the with-
replacement scheme of the bootstrap aw(#t) represents the weight assigned to unibbserve that the choice of
m=n-1 simplifies significantly the algebraic expressif (6) to

w, (K) = w(k)ni_1 mult, (k) (7)

To make that choice final in the mind of practitos, it only remained to observe that a choicenerfi-1 may lead
to some negative values for the weights wheneais-1 (including Rao and Wu (1988) own suggestiomof n — 3
for large enougim) does not yield any significant gain through siatigdns (and requires a larggo begin with).

An example helps to get a feel for the replicatwocedure and the bootstrap weights. Consider SREWiEh
N=20,000 andh=20; as a resultf =0.001C0 and w, =1,000for all k. The following snapshot, taken from
SAS®, illustrates the bootstrap replicates obtawvet B=5.

L'l-' YIEWTABLE: Work.Bootstrap_replicates Elﬁj@
id il mult2 k3 mulkd mults -]
1 1 1 0 1 2 1
2 2 2 0 i] 1 0
3 3 0 0 2 1 2
4 4 1 0 4 1 £
5 5 0 1 a a 0
E [ 3 2 1 1 2
7 7 0 0 1] 1 2
8 g 1 2 1] 1 0
i 9 0 1 2 3 1
10 10 0 2 | 1} 0
11 11 3 1 1 1 1
12 12 0 4 2 1} 3
13 13 0 1 0 1 0
14 14 1 1 2 I 1
15 15 0 1 0 4 1
16 16 0 ] 0 ] ]
07 17 1 1 1] 1} 0
14 18 1 0 1 1} 0
19 19 1 2 2 2 Bl
20 20 4 0 1] 1} 0 =
B o

Observe first that summing the 20 values of anthef‘mult” columns of the snapshot yields 19, ashibuld, since
n-1=19 units were selected with replacement. Onpriiing feature is that while technically no muigty value in
this case can exceed 19 (which can only occur Ifiphigities of O are observesmultaneously for all other units in
the same column, as they must sum to 19), no rhiaitipgreater than 4 was actually observed. Thibécause, for
a given unit k, the observed multiplicity is governed by the mial distribution Bin (-1,1/h), though the joint
distribution over all units is multinomial. (Obserthatk is subject tm-1 independent trials, each with a probability
1/n of being selected; the selection is the succeass)hiEhe following table gives the frequenciesléogen:

mult(k) Relative frequency (%)
36.79
36.79
18.39
6.13
1.53
0.3
6 ton 1.6
Table 1: Expected relative frequencies of thetiplidities for a given unik
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In essence, Table 1 says that for the valueB abed in practicei.g.,, B<1,000), no multiplicity over 5 has a
reasonable chance of ever being observed.

Note: For variance purposes, the stochastic bebhawabthe multiplicities should be looked at as lolei.e., over
all k in s at once, and not for a given unit as we just gictually, it is because the multiplicities over klin s are
multinomially distributed that their sum always 19, for if they wereindependent realizations of binomials
(19,1/20), the sum would vandom (though with expected value of 19).

It is instructive to see what the file depictedhe Snapshot above looks like once the multipésitare turned into
bootstrap weights using (7):

E‘, YIEWTABLE: Work.Bootstiap_weights il
id w k1 k2 k3 w k4 w k5 -

1 1 1052.62 0.00 105263 2105.26 105262
2 2 2105.26 0.00 0.00 1052.63 non
3 3 0.00 0.00 2105.26 1052.63 2105.26
4 4 1052.63 0.00 421053 1052.63 215783
5 5 0.00 1052.63 0.00 0.00 0.00
B g 3157.83 2105.26 105263 1052.63 210526
v 7 0.00 0.00 0.00 1052.63 2105.26
g g 1082.63 2105.26 0.00 1052.63 0.00
g 3 0.00 105263 2105.26 3N57.83 105262
1o 10 0.00 2105.26 1052.63 0.00 0.00
11 1A 357.89 1058263 105263 105263 108263
12 12 0.00 421053 2105.26 0.00 215783
13 13 0.00 1052.63 0.00 1052.63 0.00
14 14 1082.63 1058263 2105.26 0.00 108263
15 15 0.00 105263 0.00 421053 105262
16 16 0.00 0.00 0.00 0.00 0.00
17 17 1052.62 105263 0.00 0.00 0.00
18 18 1052.62 0.00 1052.63 0.00 ~.o.oo
19 19 1082.63 2105.26 2105.26 2106.26 2105.26
20 20 4210.53 0.00 0.00 0.00 oot

We have observed in the previous snapshot on ricilips that the column-sumsé., overall units of the sample)
were all 19, a fact guaranteed by the multinomiatrithution underlying the bootstrap re-samplindiefe is an
analogue for bootstrap weights: the sum the vabfeany column weight “w_k” yields 20,000, which is the
population size. Because all 5 such sums here yiedame value of 20,000, we obtain a bootstrap variance

estimate for the estimated size of the populatiogyor (N) of zero as we are entitled to here. Therefore, th

bootstrap “figures out” what is known and what @& through the multinomial distribution. In contrasuppose a
domainD of interest corresponds in the sample to the &ighteen records in the snapshot above depictiag t

~

bootstrap weights. The bootstrap variance estimegor (ND) of the estimator of the domain’s size will be
nonzero (as it should since the domain’s size isnawn) because the 5 sums will not be identica;gharantee of
getting the same total for all replicates offerguthre multinomial does no apply here because natfahe sample

was used to build the estimalbé, .

This case study is important because it clearlywshwhat assumptions were made to obtain the seetalbotstrap
weights, namely they are obtained by expressingotiwstrap estimator of the mean as a weight-basgohator.
While it is inviting to turn the bootstrap weight fit any case, in the end the farther we strayyafram these
assumptions, the more tenuous the guaranteesdabeytban offer.



Case study 11: Stepping into the jackknife’s no man’'s land or SRSRV/ with sampling fractionf C 0and
estimating the median.

As we mentioned at the beginning, one reason tfeptde bootstrap over the jackknife is the posigjbpf
obtaining correct variance estimates for the me¢had other percentiles). While it is now commomwktedge that
the bootstrap “works” for the median, users areegalty not aware of the guarantees offered by Hesretical
developments in this field. For instance, very fesers know that the guarantees are asymptotictimeyahat some
kind of convergence is involved. While the theoaysthat the bootstrap variance estimator “conripeboth the
mean and median cases, it does not say that ivérges” at thesame speed in both cases. And this is something
users need to be aware of, since the rate of cgamee will dictate which sample sizes are reasgnadblered by
the theory from those which are not.

What is usually understood by the sentence “thedb@p works for an estimator” is that the (seqees®} bootstrap
variance estimator (indexed hyis consistent for the true variance of that eatomi.e., it converges to that value in
probability. For our needs, it suffices to say thatvergence in probability describes the fact, thst increases, the
distribution of probabilities on the bootstrap wate estimator gets tighter and tighter aroundrtles variance. In
that sense, the bootstrap works for SRSWOR witHigibte f for both the mean and the median (of a population)
while the jackknife doesot work for the median (though it works for the mean)

Note: The bootstrap is being evaluated here sdbglits capacities to yield correct variance estonsin the cases
which matter most to users through the notion aistsiency; this is how the jackknife, its predeoesis evaluated
for the same tasks. But the bootstrap is more ¢gharethod to produce correct variance estimatodedd, in many
situations the bootstrap distribution successfaliynics the sampling distribution of the estimator & sense we
will make precise later, where we will also showdatential use for that in practice), which is notnething the
jackknife was ever designed to do.

Let us look now at several graphs describing th@nmf the consistency. We performed the follogvBimulation
which exploits the equivalent statement that tharador is consistent if the ratio of bootstrapiaace to the true
variance converges to 1 as sample sig&reases; the key steps are:

1) Create a population of very large size (as to h&vie O for the sample sizes considered in Step 2 below)

with a normally distributed variable of interestys
2) Draw 500 samples under SRSWOR for each of the siz&8,n=100,n=500 andh=1,000.
3) Obtain from Monte Carlo simulations the “true” \aice for the mean and for the median.
4) Bootstrap each sample using one hundred repli¢aéesB=100) and obtain for each estimator an estimate

of the variancevgoot s We thus get, for eaah 500 variance estimates.
5) For eachn and estimator, compute the ratio of the varianggot , to the corresponding Monte Carlo

varianceV)c .
6) For eacm and estimator, obtain the histogram of the 50i@sat

First, the case of the mean. Since the bootstraprisistent in this case, we expect to find the E@i@s spread out
to some extent around 1 in the histograms below,dgetting tighter and tighter around 1 asncreases. The
continuous line is the same in all histograms @f tiean: it is that of the best fit obtained 0, displayed to
facilitate comparisons across sample sizes.
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Figure 2: Histogram of 500 ratios of bootstrap variancénegtes to the true variance for50 (top) andh=100 (bottom) in the case of the
mean. To facilitate comparisons across values tife best fit line is that af=50.
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Figure 3: Histogram of 500 ratios of bootstrap aace estimates to the true variancerfe500 (top) anch=1,000 (bottom) in the case of the
mean. To facilitate comparisons across values tife best fit line is that af=50.

As we can see, the histograms do get tighter ayideti around 1 as increases as the theory asserts. To be fully
covered, the rate of convergence depends onrbatitdB, the number of replicates used. As mentioned abege
fixed B to 100 which was deemed a large enough valudusiridte the idea while allowing the simulationgua in

a timely fashion.

Let us now examine the corresponding plots in #seof the median.
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Figure 4: Histogram of 500 ratios of bootstrap aade estimates to the true variancerfeb0 (top) andn=100 (bottom) in the case of the
median. To facilitate comparisons across values tife best fit line is that of n=50.
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Figure 5: Histogram of 500 ratios of bootstrap aace estimates to the true variancerfes00 (top) anch=1,000 (bottom) in the case of the
median. To facilitate comparisons across values tife best fit line is that af=50.

While the best fit curve makes it clear that thetdgrams get tighter and tighter around h @&screases (as theory
says they should), it is also clear that they da atower rate than for the mean. In practice théans that the
experience a survey statistician has gathered trapfsng the mean, for instance, is to be extensiél care to
more complex estimators like the median (and sefaffiomains), even if the bootstrap is known to workthem
too. To emphasize this, we could just say thathibetstrapworks very nicely for the mean andvorks for the
median.

For the reader concerned with the spread in thedrams about the median (with some ratios wellr &even
whenn=1,000), let us take a look at the median withjauiknife. As we have mentioned already, the jadikis
known to be inconsistent for the median. Actualhge theory tells us to expect that the ratio wéhbve like a

2
random variable with distributimﬁ)(% /2) (see, for instance, Efron (1979) on page 6). Caqunsatly, it does not
converge in probability to 1. Instead of illustragithis through simulations, we preferred to transf the ratio of

the jackknife variance to the true varianggcy n/Viyc . into 2,/Viack .n/Vic S0 that we get a histogram that
ought to compare directly (for largg with the chi-square distribution with 2 degreé$éreedom (see Figure 6).

Indeed, observe that if

2
Viack.nVme U Eﬁ\/—'(/‘(22 /2) 8)



then
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since the square root function is continuous.
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Figure 6: Histogram 0Q1/VJACK,n /VMC for the jackknife withn=2,500 and the chi-square distribution with 2 degref freedom as the

continuous line.

The histogram clearly shows what happens when @n@ estimator is known to be inconsistent for tifue
variance: even when large sample sizes are invpthedtails refuse to go away and thus will nobalthe mass to
collect in just one spot.

This case study is a reminder that estimating @mgamce of a complex estimator from a small sansgileis a
challenge, even if we have a technique like thetsicap to carry out the calculations involved (vda with
classical techniques we never usually reach thiat)dn other words, understanding how an estimatdich uses
sample information in a non-straightforward wayesiponds” to the complex structure introduced inséuaple by
the sample design is a difficult task (even for tim®tstrap), especially if the information conté&niminimali.e.,



small sample size. From that point of view, the encomplex the interaction between estimator andoanesign,
the more information we need to assess it apprigyia

Case study 111: Venturing into WOR territory with SRSWOR and norghgible sampling fractio.
With this case we are getting closer to the sedtimgny users of survey data encounter in practice.

Even though the bootstrap weights are not providedhis case in Rao, Wu and Yue (1992), many useadily
make the extension from the negligible samplingtican case described above by showing that theshapt
estimator for the mean (see equation 4.1 of Rad/Mn@1988)) can be expressed in the form

Yo = > Wy (K)y /N (10)
K

provided theo™ bootstrap weight of uni¢ W, (K) , is defined as

w, (K) = W(k){l—«/l— f o+ 1-f ni_lmultb(k)} (11)

Even though the bootstrap is carried out using th-réplacement scheme, we can still hope to tramkndthe
variance of the original without-replacement samgplischeme by introducing into the equations thepsam
fraction f. The bootstrap weights in this case come withrar@e: if a unit has multiplicity zerae., it was not
chosen in a given replicate by the with-replacentssign, then it gets a non-zero bootstrap weighietheless.
This in itself is not problematigrovided all units of the sample are listed in the repksafile. To drive home this
point, consider SAS® which is the software use8tatistics Canada. (It is not an issue if you dbkmow SAS®,
as no programming is involved.) Let us look at ltbe replicates file depicted in the snapshot abwea® obtained;
to simplify things, let us focus on the first twoits of that filei.e., id=1 or 2:

ABLE: Work.Bootstrap_replicates

1 1 o 1 2 1
2 2 o 0 1 a

This is not directly an output of the SAS® PROC SIEYSELECT procedure used to draw the replicatemftbe
observed sample; it is actually the transpose efadlowing “rows-file” whichcan be obtained from SAS® PROC
SURVEYSELECT:

id Replicate # il
1 1 1 1
2 1 2 0
3 1 3 1
4 1 4 2
5 1 5 1
= 2 1 2
7 z 2 0
& 2 3 a
E z 4 1
10 2 5 i

But this is not the proceduredefault output, which rather is:



id Feplicate # rillk

O im | | e T | —
My — — -
F= = M L=
— ks = —

In other words, in the default output file the snitith zero multiplicity arenot provided (they are only outputted
under the option OUTALL of the PROC SURVEYSELECatstment). Consequently, if the default file is used
compute the bootstrap weights and then transpdisedero-multiplicities will have missing bootstragight values
in the “squared file” which will be set presumaldyzero afterwards to avoid releasing missing \&alue

This subtle point of the implementation of the lsb@p in the case of non-negligilfléas led to erroneous early
(and still persistent to this day) assessmentbd@ffect that the bootstrap did not quite worktfa@ mean, contrary
to what was expected. This is likely because the dantributors which are the units with zero mditipy were
missing in the simulations performed due to theafdbe default options for the output of the set@tprocedure in
SAS®. While individually the missing bootstrap wiig tend to be small compared to the non-zero piigities
records, there are many of them around (recall fi@le 1 that about 40% of all units in a givenlicgte have a
multiplicity of zero). If the zero multiplicitiesra handled the right way then the ensuing bootstrafance
estimateglo behave for the mean like we expect them to.

To explore on our own the consistency of the boapsin the case of the median, we redid the sinanlatdescribed
in Case Study Il but this time usind=1/2 instead of f CO. To accomplish this we actually had to change

populations with each increased sample sizasn andN are linked byf=1/2. In other words, we considered a
sequence of increasing sample and population sizdsthat=1/2 in all cases. We have obtained basically &mes
histograms (not shown here) as in the neglidisieenario.

Case study 1V: Nonresponse and the bootstrap featuring SRSWORi@ifmkm nonresponse.

Nonresponse is unfortunately a key feature of daglaty surveying activities, but one usually misdimmgn practical
discussions involving the bootstrap.

Nonresponse is a threat to a survey for at leastalfiowing two reasons: a) the loss of analytjpalver that comes
with a smaller effective sample size; b) the pdbsitof bias due to differences in the profile ifspondents and
nonrespondents.

The first issue is usually addressed at samplingrevthe loss is anticipated and compensated byrepmmdthe field

a larger sample than what is truly needed. Thergkéssue is addressed at the weighting stage wsisgjtable
corrective methodology to thwart the effects nopoese would have on the estimates if ignored. Cinthese
methodologies involves the construction of RespohB®nogeneous Groups (RHGs). RHGs are typically
constructed using the response propensity scone &dogistic model (see Little (1986) and Eltingel aransaneh
(1997)) or the cross-classification method. Ba$icahe score method gathers respondents with aimpitedicted
response propensities which are obtained from &tlogmodel fitted to the collected data. One featof this
approach is the controlled number of RHGs whichrttethod gives rise to. With the cross-classificatigpproach
(often known under the name of the software comgnaisied to implement it, KnowledgeSeeker®), grougs a
formed by crossing the (possibly many) variablasnfbto “explain” the nonresponse. Since crossimipbtes is
multiplicative, this approach often gives rise taae number of RHGs, especially if used routinelproduction.

The proliferation of RHGs has a soothing effecteaese it gives the impression that the most has deee to
thwart nonresponse: aggressive measures were takenissue is that with the growing number of RH®&mes



smaller and smaller RHGs which, in turn, often hssin unstable variance estimates. Consequentipde-off has
to be reached between efforts to reduce bias anthgtability in the variance estimates these &fwiill bring. But
how? This can be accomplished using the so-cabbetstrap histograms which most users are not agwst.

The widely accepted way to implement the bootsimgmesence of nonresponse is to compute, withth egplicate
and RHG determined based on the sample, a nonms@mjustment using bootstrap weights of resposdamd
nonrespondents. (Consequently, the constructiorthef RHGs themselves is not revisited by the baagtstr
procedure: we take the RHGs as they stand from iexediion of the nonresponse patterns in the sample.)

To illustrate the idea of how bootstrap diagrans loa used to see if the construction of RHGs ua#ert will lead

or not to stable estimates, consider the followesx@mple. Suppose a sample of size 100 was drawerund
SRSWOR and that uniform nonresponse yielded 7%orefgmts. Under the assumption of uniform nonrespoas
single RHG would do but we will nonetheless create RHGs, one big which represents 90% of the sapaid
one small (the remaining 10%), just for the sakearhparison. Indeed, aside from their sizes, tteRMGs should
behave the same with respect to the nonrespondeamiem. As mentioned above, the bootstrap is cdaduxy re-
samplings and re-computing all 1,000 nonresponse adjustnfentsach RHG by using the 1,000 sets of bootstrap
weights. We then plot the 1,000 nonresponse adgrasrobtained for each RHG.
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Figure 7: Histogram of bootstrap nonresponse &ujeists by RHG, one big and one small, in the c&smiform nonresponse in a SRSWOR
sample.



Again, the two RHGs ought to behave the same, éxmegsibly for the effect their size may have om tomputed
nonresponse adjustments as a whole. In the largé Rid adjustments are gathered tight around theesponse
adjustment obtained fromwhereas in the small RHG they are all over theeldt is clear that the nonresponse
methodology has given rise to unstable adjustmientise small RHG case, and all this is seen froenkthotstrap
histogram.

A similar case can be made for post-stratificatifom, instance, where the creation of too many ptisita may
jeopardize stability. In this case, as in the cas@onresponse, instead of relying on a rule ofrthuabout the
appropriate size of the groups usually employedvimid abusive use of these methodologies, one sarinstead
the diagnostic feature of the bootstrap for thaywame purpose.

But even if this bootstrap is implemented correctly in fhresence of nonresponse, and the methodology w@&sed h
been scrutinized through the bootstrap histograchriigue just depicted, it is a fact that it non&the fails to
captureall of the variance due to the design and responséamesm.

Let us use the simplest of all cases to illusttaie SRSWOR, uniform nonresponse and the meathidrcase it is
well-known that the true variance under total resgois:

v(g)=1"N g2 (12)

n

Under the assumed nonresponse the usual estinfat@twariance isgg. Sarndakt al. 1992, Section 15.6.1):

v(§)= ﬂ s (13)

where Sr2 is the variability observed in thevalues among the respondents.

It is interesting to observe that in this simpleseaathe net effect on variance of the mean of #mpsing and
occurring nonresponse is known: it amounts to aptiag of r units straight from the population, as if the ora
sampling ofn units fromN never occurred. Of course, in practice we almesten know what form the variance
takes for any given estimator when nonresponse sante the picture, and this is the very reason véplication
methods are used in practice.

Of the myriad ways to express the total estimat@dance (13) as the sum of two algebraic entitedy a few
make conceptually any sense. And of the latteg, isrmost useful to understand what part of (1) blootstrap
does capture and what part is does not: it is Hayarted approach (see Fay (1991) and Shao awrdl (3899) for a
description of the idea, and Haziza (2005), Sedsi@, for the worked out calculations underlying davelopment
here). In our scenario Fay's inverted approactdgi¢he following decomposition of the variancerastor (13):

A(;):l—n/NSZJrn—rszzl—r/st

Vv 14
Y r TN T ro a4
X —
Vi Vi
The componen‘t?, is an estimate of the following expectation:
v, =EVp (r) (15)

Notes: The subscript refers to the nonresponse mechanism RBméfers to the design, and the variablevhich
appears in the condition refers to the observedfketspondents. (Taking the design expectagjioen the set of
respondents, and not vice-versa, constitute the bé&ay's inverted approach.) Also, the subseri@ndll simply



mean “one” and “two”, and not “first-phase” and tiyphase” as one could be led to think since nomesp is an
important case of the two-phase variance estimdtaanework €.g., Section 9.8 of Sarndat al. (1992)).

Since we only have one set of respondents at spodal,V, is estimated simply by estimating the design vexéa

Vp (§/|r) given the respondents. But this is precisely what bootstrap is providing: an estimate of the gtesi

variance given the respondents. Indeed, heuristicl the (Rao-Wu) bootstrap the response stafus onit is
nothing else than a 0-1 value that has been askigieterministically) to each unit of the sample bootstrap does
not “perceive” any other selection mechanism thz dample design it has been subject to. Theresamee no
replication of any kind of the nonresponse mechmariigs been attempted by the (Rao-Wu) bootstrapgeponse
status of a unit is just like a post-strata indicaa status completely determined once the sahgdebeen selected.
This is not to say that the (Rao-Wu) bootstrap dumscaptureany of the variance due to nonresponse. It simply
captures the variance due to nonresponse as iéspoinse were a deterministic process.

Therefore, all the (Rao-Wu) bootstrap can hopertwigde us with is a numerical value which would aaéxactly
V, in equation (14) if no Monte Carlo approximatioasaneeded, which means tl’\én is completely missed out.

This begs the question of when exactI)M§ small enough as to be ignored. An easy calculaiwws that for a
givenr:

n-r 82

1 NS
Missed - Nr 00 (16)

Total N-1r >

SI’

Nr
whenever:

% 00 17)

The idea is that when the sampling fraction is vemyall, the total variance is dominatadmagnitude by the
sampling andnot the occurring nonresponse. As a result, when #mpBng fractionf is near 0, whatever
contribution to the variance the bootstrap picksddup to nonresponse (by treating it as a detertigmsechanism
givens), in addition to the contribution it captures frahe sample design, is more than enough to géterend a
very reasonable variance estimate of the totahwasg.

At the other end of the spectrum this suggestswian we have a census., f=n/N =1 and nonresponse, then
the bootstrap captures nothing of the total vadai@ne often hears practitioners say that the traptsails when
we have nonresponse as we get near to a censhsyashiserve the bootstrap variance estimate devwatee and
more from the total variance to be captured. has that the bootstrafails: it still works, even then. It works at
capturing the variance introduced by the sampléyde# there are other factors at work, other nadbms such as
nonresponsend these are not fully accounted by the design the bootstrap will understandably miss them. One
could say that to apply the bootstrap in the presef nonresponse in census-like conditions idlapplication of

the method since there is hardly any design vagidode picked up: the total variance is dictatedhe occurring
nonresponse which the bootstrap we use is notmkesitp capture.

Another way of seeing this comes directly from blo®tstrap weights (11):

w, (K) =W(k){1— 1-f +/1- ni_lmultb(k)}

Indeed, iff=1, then the bootstrap weights become:



w, (K) = W(k){l— 0+ oni_1 mult, (k)} = w(k) (18)

In other words, the bootstrap weight of a unithe same in all replicates: the randomness intratiume the
bootstrap re-sampling has been completely neutdliz

In general it is not easy to say how much of théavee is missed by the bootstrap in presence fasponse since
an explicit decomposition like (14) cannot usuddly obtaineddg., the median and/or non-uniform nonresponse).
But one thing is nonetheless clear: for any givetimeator, the larger the sampling fraction the éarilje component
to the variance missed by this bootstrap.

In addition to the case of SRSWOR followed by uriiconresponse, another instance of the two-phiasgeivork
for variance estimation is of particular interesusers: the two-stage sampling design. To illtestrae will exploit
a SRSWOR design at both stages example 4.3.1 of Sarndetlal. (1992):

The true variance of the total (equation 4.3.23&ifndakt al. (1992)) is:

>1-n /N,

N 1-n; /' N;
stt() N Stu, +_|2Ni2#832/Ui 19

| N u, n;
where U is the list of clustersN, is the number of clusters i, n, is the number of clusters that were
selected at first-stage arﬂtzuI is the variance of théN, clusters, and the subscriptefers to their inner-cluster
counterparts.

The first component measures the contribution tdamae due to unequal totals across clusters amdsélsond
component measures just how spreadythalues are in each of the cluster.

An unbiased variance estimator is (equation 4.8fZ3&rndakt al. (1992)):

A~ s 1-n, /N N 1-n,/N
Vg ()= N2 82 4 'ZNZ—n L2 (20)
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Simulations show clearly that by bootstrapping thesign, the bootstrap variance estimate seeksatohh?A i.e,
\7A = Epoot (vbs|s| & s;). However, tempting as it is to assume that the ﬁomponenVA of (20) is unbiased for

the “matching” first component of (19) it is incent. It is in fact interesting to see th\;k is unbiased for a
variance termV, which corresponds to a mixture of the across-elssand inner-clusters components of the true
variance. In other words, from a bootstrap perspecthe decomposition of the total variance predidy (19) is
not “natural”, but the following decomposition is:

Vg (f)=Va +Vg (21)

where\?A is unbiased fol 5 (and so is\?B for Vg incidentally); calculations show that these argliekly:

V, =N
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N; Soy 22
n, StU, n, UZ,: i n yU; ( )



>1-n; /N,

Vg =3 N, L s2, (23)

U, n;
An alternate form foV, is of interest:

N21 n|/N 1 N.zl_ni/N'

Y, 32 24
AT n, NI & i yU; (24)

This last expression suggests that when we corﬁ{zgteor when we bootstrap the first-stage sample)areetrying
to capture the variance in totals across clustetsthe average over the clusters of the inner-clusaeiances iry-
values. This form also makes the comparisoN gfto the total varianc¥,y more direct:

1 N
Sb, +1UN, ZNzr:]/Syui
\\//A - ' (25)
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Indeed, further algebraic simplifications of (2% that this ratio is about 1 whenevey << N, i.e, f; 0O

which is basically what we had concluded abovehian dase of nonresponse. To summarize, when it ctonge
variance captured by the bootstrap under a twoeplmastwo-stage design, the first-phase/first-stagepling
fractions dictates it all.

Case study V: Routinely performed survey data analysis.

In social surveys users are typically handed ofiteaof survey data along with bootstrap weights them to
investigate “on their own”, as opposed to busirssseys where estimates are often obtained in cdok&boration
with the survey methodologist and constitute a ddath output product of the survey. Consequentlyjanae
estimates are often obtained with the barest mininkinowledge of the bootstrap method, if not of aace
estimation in itself. Indeed, it is the author'perience that users see the bootstrap weightsaaben annoyance.
It thus surprises them when they realize that tiwdirap can actually be an ally through its diagicaccapacities.

In the previous case study we gave an exampleedbdiotstrap diagnostic capacities with the creatioRHGs, but
this was addressed primarily to survey samplersesinoccurs before the bootstrap weights are sekkdo users.
The diagnostic we describe here shows that thealsdissomething in the bootstrap for users theraseM/e use for
illustrative purposes the problematic of routinklylt confidence intervals and proportions.

Here we go beyond the bootstrap as a techniquestimate the sampling variance and look at its igbiid
reproduce, in many contexts, the sampling distidgioubf the estimator at hand. More precisely, kn®wn that for
SRSWOR with f [ Oand the mean that:

Yeoor — Y B y-y (26)

Some exploit this fact to propose new practieeg.,(construct confidence intervals using bootstraemiles) but
here we will use it t@uestion an existing practice. The extent to which (26)dsdior just about any estimator and
sample design other than the one considered hdebiable and must therefore be used with caution.

Either through software or from their own programgjiusers routinely construct confidence intenassuming
normality, whether they realize it explicitly or tadhis is particularly true when mass productidrestimates in a
timely fashion is under way after the collectiors leended.



Consider the situation where a SRSWOR sample ef Hi0 is observed and the bootstrap methodologppsed
to yield bootstrap weights such that the follow®®P6 confidence intervals (based on the normalisuamption)
were obtained for the proportion of two separateratteristics, one estimated at 3% (ip®%) and the other at
22% (truep=20%):

(-0.36%, 6.36%)

and

(13.89%, 30.11%)

Something is clearly wrong with the confidence liné involving the smaller proportion: the negatlegver bound
does not make sense. In practice, though, thikesylto be treated lightly by simply rounding tlaver bound to
zero and have the originally computed confidenterual be released as: (0.0%, 6.36%). To explaig things
have gone awry with the smaller proportion it isunal to suspect the normality assumption is alt,féut how to

confirm that? Through the bootstrap. What followghe histogram of the bootstrap estimates for estimated
proportion which underlay the bootstrap variancemfwhich the confidence intervals were obtained.

Bootstrap estimates for p=20% with normal best—fit
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Figure 8: Histogram of the bootstrap estimatedtferestimated proportiorf) =22%.



The histogram is well-fitted overall by the normalrve and thus the assumption of normality madeutabwe
sampling distribution of the estimator is reasopabkt here. In this case, the left tail goes quiakl zero, well
before the origin is encountered: the normal cudespite it left tail which goes to minus infinity a reasonable
model for the sampling distribution which only adsrafter all positive values.

Bootstrap estimates for p=5% with normal best—fit
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Figure 9: Histogram of the bootstrap estimategterestimated proportiorf) =3%.

In the problematic case of the smaller proportibhe two, it is clear that the histogram and thestkit normal
curve are far apart: it is not reasonable in thisecto assume normality. We can actually see winggative lower
bound was obtained: the best-fit normal curve’'s tafl extends well into the negative axis beforecan be
reasonably assumed to be zero as it was the caeftarger proportion we have just looked at.

In summary, bootstrap histograms should be useall a&teps, whether by the survey sampler to chetkhe
adjustments introduced or by the user in the argfyasrformed. In either case, if the histogram kekange with
say some replicated values standing clearly apam the rest, then a deeper investigation of thithatmlogy under
consideration should be undertaken. In other watds,not required to know what theory says th&dgram ought
to approximate to get a valid diagnostic procedars. peculiar feature of the histogram in itselfdd be treated as
suspicious and investigated on these grounds.



Concluding remarks

There are several aspects of the implementatidgheoRao-Wu rescaling bootstrap that require fineasavith any
methodology, going from theory to practice is sames tricky. In this paper we have presented anfgw issues
since a more complete picture would have requirdeingthy description of related survey situatioaspgcially
about longitudinal surveys); see Girard (2007) &idard et al. (2009) for more details. It is our experiencet tha
when common (and sometimes not so common!) pitfaiés avoided, and its limitations kept well in mirtde
implementation of the Rao-Wu bootstrap method goesothly and is overall versatile and easy to use.
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