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Abstract 
 
The Consumer Expenditure Survey (CE) is a survey with a multistage design. The first stage of the CE sample includes 
a set of areas (PSUs) selected from the set of U.S. Core Based Statistical Areas, and CE additionally selects a set of 
PSUs to represent the rest of the nation. After selecting the original sample of PSUs, a number of selected PSUs were 
cut from the sample for budgetary reasons. However, the deletion process did not use an explicit probability 
mechanism in some cases. Consequently, it was of interest to develop weighting-adjustment methods that provide some 
degree of robustness against potential bias. Mean expenditures are estimated by a Hajek-type ratio estimator based on 
sample weights calibrated to 23 known demographic population totals. The variances of these estimators are estimated 
by the Balanced Repeated Replication (BRR) technique. In this paper we investigate how the sample cut in CE 
influences current estimates of mean expenditures on national level and examine BRR estimates of their variances.  
 
Key words: calibrated estimator, 0-calibrated variance estimator, sample cut selection probability correction, BRR 
variance estimation, variance strata collapsing, bias of variance estimate  
 
1. Introduction 
 
The Consumer Expenditure Survey (CE) is a nationwide household survey designed by the U.S. Bureau of Labor 
Statistics (BLS) to find out how Americans spend their money. One of the primary uses of its data is to provide 
expenditure weights for the Consumer Price Index (CPI). The CPI affects millions of Americans by its use in cost-of-
living wage adjustments for many workers, cost-of-living adjustments to Social Security payments, and inflation 
adjustments to Federal income-tax brackets. CE data are also used to compare expenditure patterns of various segments 
of the population, such as elderly versus non-elderly people. In addition, the data are being used by the Federal 
Government in a new experimental poverty index. 
 
Sample Design. The selection of specific households to participate in the CE survey is carried out in multiple stages. 
The first stage of sampling is defining and selecting a random sample of geographic areas called “primary sampling 
units” (PSUs) from across the United States. In this stage, the set of counties in the United States is divided into small 
groups of one or more counties (called PSUs), and a representative sample of them is selected to be in the survey. After 
the PSUs are defined and selected, the second stage of sampling involves determining the number of households to be 
visited in each PSU. The CE’s budget allows for a certain number of households to be visited each year nationwide, 
and, in this stage, that number is allocated across the individual PSUs selected for the survey. The final stage of 
sampling is selecting specific households to be visited within the PSUs. Households are selected using a systematic 
selection procedure to ensure that each category of households is well-represented in the survey.  
 
Defining and Selecting the PSUs. In the first stage of sampling, PSUs are defined and selected for the survey. PSUs 
are counties or groups of counties grouped together into geographic entities called “core-based statistical areas” 
(CBSAs) by the U.S. Office of Management and Budget (see 
http://www.census.gov/population/www/metroareas/metrodef.html for the details). CBSAs were defined for use by 
Federal statistical agencies in collecting data and tabulating statistics. 
 
There are two types of CBSAs, metropolitan and micropolitan. “Metropolitan” CBSAs consist of one or more counties 
with at least one urban area of 50,000 or more people, while “micropolitan” CBSAs consist of one or more counties 
centered around an urban area with 10,000-50,000 people. Both include the adjacent counties that have a high degree 



of social and economic integration with the area’s core as measured by commuting ties. Areas outside CBSAs are 
called “non-CBSA” areas and are mostly rural. 
 
After the PSUs are defined, they are categorized according to their population and region of the country. There are four 
regions of the country (Northeast, Midwest, South, and West), and four PSU “size classes”: 
“A” PSUs, which are metropolitan CBSAs with a population over 2 million people 
“X” PSUs, which are metropolitan CBSAs with a population between 50,000 and 2 million people 
“Y” PSUs, which are micropolitan CBSAs  
“Z” PSUs, which are non-CBSA areas, and are often referred to as “rural” PSUs 
 
By definition, the “A” PSUs are “self-representing” and, therefore, have a 100 percent probability of selection in the 
CE survey. The “X,” “Y,” and “Z” PSUs are “non-self-representing.” The non-self-representing PSUs are grouped 
together into groups of PSUs (called “strata”) according to a 5-variable geographic model whose variables are latitude, 
longitude, latitude squared, longitude squared, and percent of the population in the PSU who live in an urban area. A 
typical stratum has approximately 10 PSUs, and all of the PSUs are in the same “region-size class.” After the PSUs are 
grouped into strata, one PSU per stratum is randomly selected with probability proportional to its population. The PSU 
that is randomly selected represents the whole stratum (see King and Johnson-Herring 2007 for the details). 
 
Sample cut. After this sample design was  implemented, newly imposed budget constraints forced the CE and CPI to 
eliminate 11 “X” PSUs from the sample. In addition, seven “A” PSUs were reclassified to the “X” category for 
publication purposes. However, these seven reclassified PSU’s were still truly self-representing for design and 
estimation purposes. As a result, the sample of PSUs currently used by the CE has 91 PSUs, of which 75 urban PSUs 
are also used by the CPI (see Ernst, Johnson and Larsen 2007 for the detailed description of the sample cut procedure 
and the sample weights adjustment for the sample cut).   
 
Mean expenditure estimates. For a given expenditure the national estimate of its mean during a particular time period 
is defined as a ratio of “calibrated probability weighted” estimate of its total cost in the time period to “calibrated 
probability weighted” estimate of the population total (Hajek estimate), where “calibrated probability weighted” 
estimate is a weighted estimate with the weights equal to inverse probability of selection adjusted to sample cut and 
non-response and calibrated to 23 known population totals. These 23 calibration totals are the total numbers of 
members within different age, geographical and urban groups. Note also that since the weighted estimate of the 
population total is calibrated to the known totals, the denominator of the Hajek estimator is constant (see Section 2). 
Therefore, the national estimate of the mean of a particular expenditure can be viewed as simple calibrated probability 
weighted estimator divided by a constant. The latter can be not correct for sub-national mean expenditure estimates, 
such as mean expenditure estimates within specific age or income group or within the giving part of the country.  
 
Variance estimates of the mean expenditure estimators. Variances of the mean expenditure estimators are estimated 
by Balance Repeated Replication (BRR) technique (see Wolter 1985, Chapter 3). CE uses 0-calibrated BRR estimator, 
i.e. each replicate estimate is calibrated to the same 23 known totals (see Sverchkov, Dorfman, Ernst and Guciardo 
2004). Recall that the CE sample design selects only one PSU from each stratum on the first stage of the selection 
where classical BRR variance estimator assumes selection of two PSUs from each stratum. Consequently, CE (i) 
divides A-PSUs into “pair of variance PSUs” such that population totals in the respective variance PSUs are as close as 
possible, (ii) collapses geographically close X-, Y- and Z-PSUs into pairs of variance PSU’s such that population totals 
in respective variance PSUs are as close as possible, and then apply BRR technique as if the sample design is a 
stratified sample of two PSUs from variance PSU’s from the respective strata. It is well known that (i) decreases the 
expectation of the variance estimator, and thus may induce negative bias; and (ii) increase the expectation, and thus 
may induce positive bias (see Wolter 1985, Chapters 2 and 3, Rust and Kalton 1987).    
 
This paper investigates whether the sample cut in CE influences significantly the estimator of mean expenditures and 
examine whether collapse of the X-, Y-, Z- PSU produces significant bias of 0-calibrated variance BRR estimators.  
 
2. Definitions.  
 
Let H  be the number of the original sampling strata, hiy  be an expenditure of interest of Consumer Unit (CU) i  in the 

selected PSU in stratum h , hN  be the number of CUs in the selected PSU in stratum h , and 
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Estimators before the sample cut. Let hs  denote the sample of CUs selected from the selected PSU in stratum h , hiw  
be inverse probability of selection of the selected unit i  in the selected PSU in stratum h  before the sample cut 
adjusted for non-response (non-calibrated sample weights before the sample cut). The calibrated sample weights hiv  

are defined as the weights that satisfy
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and urban groups within CU. 
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that under very general assumptions Ŷ  is consistent for Y . Note that *
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Remark.  The latter is correct for the estimators on the national level, for estimator in a sub-area A of the population, 
such as mean expenditure estimator within specific age or income group or within the giving part of the country, 
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∑ ∑  is not necessarily equal to the population in area A and therefore Ŷ can be non-linear and the calibration 

property can be violated in the sub-area. In what follows we consider the estimators on the national level and give 
possible generalizations for the estimators on sub-national level in the comments.   
   
Estimators after the sample cut. The mean expenditure estimator after the sample cut is defined similarly to the 
estimator before the sample cut except that the non-calibrated sample weights hiw  are replaced by the sample weights 
corrected to the sample cut, hiw ,as defined in Ernst, Johnson and Larsen (2007). Thus the calibrated sample weights 

after the sample cut, hiv  satisfy 
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. Note that unlike the estimators before 

the sample cut, since hiw  is not necessarily equal to the inverse of the actual probability of inclusion into the cut-

sample, Ŷ  is not necessarily consistent for Y . 
 
3. Testing whether the sample cut induces bias in the mean expenditure estimator on the national level. Similarly 
to Sverchkov, Dorfman, Ernst, Moerhle, Paben and Ponikowski (2005, Remark 1 and 2), one can show that if 
L = −∞ and U = ∞  then  



ˆŶ Y− =  
1

1

1 1

ˆ( ) ( )
h h

H H
T

hi h h hi hi h hi hi
h i s h i s

N w w w y
−

−

= ∈ = ∈

⎡ ⎤
− −⎢ ⎥

⎣ ⎦
∑ ∑ ∑ ∑T T

x i i it x x x x B                                                                              (1) 

where hiw are the same inverse probability weights considered above, and 1
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weighted least square estimate of the regression coefficient (From Result 5 of Deville and Särndal 1992 it follows that 

the same remains correct asymptotically for reasonably bounded L and U). Note that 
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B̂  is the weighted least square regression coefficient, and therefore (1) is equivalent to 
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where ˆ( )hi h hi hiy= − T
iz x x B , *

hi hiz w=  or hi h= iz x , * ˆ( )hi hi hi hiz w y= − Tx B . In what follows we use the latter, hi h= iz x , 
* ˆ( )hi hi hi hiz w y= − Tx B . Therefore the difference between the calibrated estimators before and after the sample cut, 
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insignificant, the latter can be checked for example by F-test by use of SAS PROC REG. The sufficient condition for 
use of F-test is that *

hiz -s in the sample are independent and normally distributed approximately. Since only one PSU is 
selected into the sample, the first stage of the selection does not induce dependence. Recall that the second stage of 
selection is systematic sample with relatively small sampling fractions. Pfeffermann et al. (1998) show by simulation 
studies that distribution of sampled measurements under systematic sampling design are independent asymptotically 
where asymptotics means that population size increases when the sample size held fixed. We applied Shapiro-Wilk test 
for normality to each * ˆ( )hi hi hi hiz w y= − Tx B , hiy  corresponds to a particular representative expenditure in CE 2005 Diary 
Survey and the normality hypothesis was not rejected for any of them on 0.1 significance level. Finally we applied F-
test to CE 2005 Diary Survey and 0 :H A = 0 were not rejected for all representative CEs on 0.1 significance level. 
Therefore we decided that the sample cut does not induce any significant bias to the national estimates of mean 
expenditures. 
 
COMMENT.  Consider now the mean expenditure estimator for a sub-area A, and let * *( , ) ( , )A A

hi hi hi hiy x y x=  if unit (h,i) 
belongs to area A and  (0,0)  otherwise. Then the mean expenditure estimator before the sample cut can be written as 
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 and similarly for the estimator after the sample cut, 
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small, which is often the case, the above test procedure can be applied to the estimators in the sub-area A by 
substituting A

hiy  in place of hiy . 
 
4. Testing whether CE BRR variance estimators based on collapsed variance PSUs overestimate insignificantly 
the true variances. For the simplicity assume that BRR variance strata are defined by pairs of PSUs, {g1,g2; 
g=1,…,G}, (for each PSU(gi) corresponds original stratum ST(gi) from wich this PSU was selected), 2G is a number of 
collapsed original strata, 2G < H = total number of original strata. Generalization of the following results to the case of 
grouping more than two PSUs in the variance strata is straightforward. As it is shown in Wolter (1985, Chapters 2 and 
3), Rust and Kalton (1987), the positive expected bias of BRR variance estimator induced by collapsing of PSUs is 
equal to  
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where ,y gjt  is the total expenditure in PSU(gj), j=1,2. Recall that CE uses 0-calibrated BRR variance estimator, i.e. each 
replicate estimate, similar to the original one, is calibrated to the same 23 known totals, and the sums of the calibrated 
sample weights, hiv , (over the cut sample or the replicate cut samples) are equal to the total population, which implies 
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Let 1, ,( ,..., )hi hi G hiu u=u  be a vector of variance strata indicators, , 1j hiu =  if CU belongs to the variance stratum {j1,j2} 
and 0 otherwise, and 1, / 2,( ,..., )hi hi H hil l=l  where, , 1j hil =  if CU belongs to the original stratum ST{j1} and 0 otherwise, 
and consider a linear regression model on the population, 

hi hi hi hie ε= + +T Tu d l a ,                                                                                                                                                         (5) 
where ( , )hi hi hi hie y v= − Tx c .  
In the following study we define hie  as the residuals of OLS regression, ( , )hi hi hi hiy v e= +Tx c , y-s against x-s, although 
as it was noted earlier, any constant c  can be used, for example, one can use probability weighted linear regression 
coefficient. If (5) is a true population model then, by (3) and (4),  
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where =u,g1 l,g1t t  is total population in the original strata ST(g1) and l,g2t  is total population in the original strata 
ST(g2). Recall that CE collapses only geographically close X-, Y- and Z-PSUs into pairs of variance PSU’s such that 
population totals in respective variance PSUs are as close as possible, so we can expect that −u,g1 u,g2t t  is relatively 
small with respect to the standard error of the mean expenditure estimator. That is why we can assume that  
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l,g1t a  can be checked by testing whether the regression coefficient a  in 

model (5) is significant which again can be checked by F-test. We applied classical regression F-test to model (5) (for 
157 expenditures with reported number of non-zero expenditures greater than 300, again, as in previous section, we 
applied Shapiro-Wilk test to the residuals of model hi hie error= +Tu d  and for most considered expenditures the 
Normality hypothesis were not rejected). The results of the F-test are as follows: for 83 of the expenditures 0 :H =a 0  
were not rejected on 0.1 significance level, for 106 CEs 0H  were not rejected on 0.01 significance level, and for 17 
CE’s the hypothesis were rejected on 0.01 significance level.  
 
COMMENT. The above testing procedure assumes essentially the calibration property that can be violated for the 
estimators in sub-areas of the nation. We suggest the following similar testing procedure that does not require the 
calibration property and thus can be applied for sub-national estimators. Consider the following regression model, 

A A A
hi hi hi hi hiy errorδ δ= + +T Tu d l a , where A

hiδ =1 if unit (h,i) belongs to sub-area A and 0 otherwise.  If the vector coefficient 
a  is not significant in this model (which can be tested similarly to the above by F-test) then the differences between 
the totals in the pairs of PSUs that formed the variance strata are insignificant and therefore 
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4. Additional analysis of the expected bias of collapse BRR variance estimator. The above tests make possible to 
check whether the expected bias is significant or not. Note that the use of F-test is  based on a number of assumptions 
like independence and normality (at least asymptotically) of the residuals of respective regression models and although 
in our study we did not get any evidence of strong violation of these assumptions we know that some violations  are 
presented. For example, the variable of interest, the expenditure, is truncated at 0 and therefore even residuals of the 
model (5) can not have pure central distribution and thus some violation of normality is inevitable. We also neglected 
by ( )− T

u,g1 u,g2t t d - part of (6) assuming that the differences between the totals in the variance strata, −u,g1 u,g2t t  , are 
relatively small without checking how practically small are they.  Therefore it would be of interest to suggest some 
practical statistics, such as an upper estimate of possible relative expected bias, that have simple practical 
interpretation. The latter can be obtained from model (5)  and representation of the bias (6).  Actually, since the totals 

=u,g1 l,g1t t  and l,g2t  are known, one can construct a naive estimate of possible bias as  
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with d̂  and â be consistent estimators of d  and a . Note that this naïve estimator overestimates the true bias,  
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and therefore (7) is conservative estimate. Finally, the relative bias can be estimated by ˆ ˆˆ ˆ ˆ[ ( )] / ( )B V Y V Y . 
 
The following two tables summarize Relative Bias statistics and 0H  rejection for a set of questionable items. 
 

Table 1. Estimates of Relative Bias in percents,  RelBias= ˆ ˆˆ ˆ ˆ[ ( )] / ( ) 100B V Y V Y × , and F-test p-values for 17 expenditures 
for which 0H  were rejected on 0.1 significance level (n=number of reported non-zero expenditures).  

 
Item RelBias (%) p-value N 
Rice 8.6% 0.0001 753 
Fresh fish and shellfish 5.6% 0.0002 765 
White bread 12.0% 0.0007 3620 
Roasted coffee 16.0% 0.0007 1250 
Fresh fruit juice 12.0% 0.001 767 
Infant dresses, outerwear 7.1% 0.001 311 
Instant and freeze dried coffee 12.2% 0.002 1009 
Bananas 11.0% 0.003 3142 
Snacks and nonalcoholic beverages at fast food 3.6% 0.003 5060 
Other laundry cleaning products 13.7% 0.003 3008 
Beer and Ale 6.4% 0.004 1622 
Natural gas 13.7% 0.005 732 
Tomatoes 10.8% 0.006 1936 
Potato chips and other snacks 6.5% 0.007 5271 
School supplies, etc. 17.3% 0.008 1249 
Electricity 15.0% 0.009 1491 
Ready-to-eat and cooked cereals 10.4% 0.0096 3652 

 
 
 
 
 
 
 

 



Table 2. Estimates of Relative Bias in percents,  RelBias= ˆ ˆˆ ˆ ˆ[ ( )] / ( ) 100B V Y V Y × , and F-test p-values for 29 expenditures 
for which RelBias is greater than 10% (n=number of reported non-zero expenditures).  
 

Name  RelBias (%) p-value N 
Lawn and garden supplies 27.1% 0.025 1076 
(*)  School supplies, etc. 17.3% 0.008 1249 
(*)  Roasted coffee 16.0% 0.0007 1250 
Sausage 15.3% 0.014 1112 
Peanut butter 15.3% 0.130 656 
(*)  Electricity 15.0% 0.009 1491 
Misc. auto repair, servicing 15.0% 0.037 516 
Bologna, liverwurst, salami 14.7% 0.097 1153 
Jams, preserves, other sweets 14.3% 0.148 1407 
Frankfurters 13.9% 0.224 1098 
(*)  Other laundry cleaning products  13.7% 0.003 3008 
(*)  Natural gas 13.7% 0.005 732 
Other steak 13.1% 0.023 900 
Frozen and refrigerated bakery products 12.7% 0.052 424 
Closet and storage items                 12.6% 0.142 301 
Crackers 12.5% 0.012 1890 
(*)  Instant and freeze dried coffee         12.2% 0.002 1009 
Sugar   12.2% 0.313 1080 
Women's hosiery                         12.0% 0.044 393 
(*)  White bread 12.0% 0.0007 3620 
(*)  Fresh fruit juice   12.0% 0.001 767 
Fresh and frozen chicken parts          11.8% 0.024     2129 
Other poultry                            11.5% 0.127 687   
Canned miscellaneous vegetables         11.4% 0.117 1789 
(*)  Bananas 11.0% 0.003 3142 
Men's underwear                         11.0% 0.044 309 
Butter 10.8% 0.067 966 
(*)  Tomatoes 10.8% 0.006 1936 
(*)  Ready-to-eat and cooked cereals 10.4% 0.0096 3652 

 
(*) – if RelBias greater than 10% and 0H  were rejected on 0.1 significance level. 
 
Conclusions. 
 

1. For most of the expenditures both statistics, estimates of the relative bias and p-values of F-test statistics, do 
not indicate essential potentional overestimation of the variances by BRR estimator based on collapsed 
variance PSUs. 

 
2. At least for 11 items marked by (*) in Table 2 and “Lawn and garden supplies” item one can expect 

overestimation of the variances by 10 - 20%, although as it was noted earlier, it can be result of conservatism 
of the estimator define by (7), see (8) for the details. 

 
3. Note that we consider the items with not less than 300 non-zero expenditures reported. Although for items 

with less reported expenditures BRR variance estimator could be approximately unbiased we do not expect 
that it would be stable enough since a lot of variance PSUs contain in this case only 0-reported expenditures, 
therefore we do not consider these items in the present paper.     

 
4. The above analysis can be repeated for the estimators in the sub-areas (following the above Comments 1 and 

2), although one has keep in mind that the number of non-zero reported items for sub-area could be to small 
for use BRR-type or other repeated sample type estimators.    
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