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ABSTRACT 
 
The objective of this research is to study the impact of climate change on the hazardous weather-related road 
accidents. The New Brunswick province of Canada is considered as a case study. The study uses road accident data 
collected from police accident reports for the period of 1997-2007. The climate change modeling uses thirty-year 
weather records of seven climate zones of New Brunswick, National Centers for Environmental Prediction (NCEP) 
re-analysis dataset, and large-scale simulation data from the Canadian Global Circulation Model, General Climate 
Model, and Coupled Global Climate Model (CGCM3). The large-scale simulation data from CGCM under SRES-
A2 scenario during 21st century are used to model the climate in the future. This study develops an Exposure to 
Weather-Accident Severity (EWAS) index and estimate the relationship between EWAS index and weather-related 
explanatory variables of road accidents by applying negative binomial regression and Poisson regression models. 
The regression models find out that surface-weather condition, weather-driver’s gender, weather-driver’s age, 
weather-driver’s experience and weather-vehicle’s age have strong positive correlation with EWAS index. The 
surface-road alignment and surface-road characteristics have negative relationship with EWAS index. The spatial 
pattern of EWAS index with respect to weather-related explanatory variables is examined for the fifteen census 
divisions of New Brunswick province, which derives similar relationships. The climate change modeling estimates 
that the number of rainy days may increase in all climate zones and the number of snowy days and freezing days 
may decrease or stay the same in most of the climate zones during three 30-year periods of 21st century (i.e. 2011-
2040, 2041-2070, 2071-2100).  The findings of this study imply that more hazardous weather in future will result in 
increased accident severity.  
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INTRODUCTION 
 
Canada is one of the highest ranked countries in terms of road accident fatalities among countries of the 
Organization for Economic Cooperation and Development (OECD). In 2008, Canada was ranked 4th in terms of 
fatalities (7.18 per billion vehicle kilometers traveled) among OECD countries (Transport Canada, 2011). In 2009, 
total fatalities and serious injuries were 2,209 and 11,451, respectively. Although these casualty statistics in Canada 
are declined by 25% compared to the period of 1996-2001, these casualty counts are still high.  Transport Canada 
(2011) identifies impaired driving, speed and aggressive driving, and occupant protection as the key contributing 
factors of road accidents (Transport Canada, 2011). Meteorological conditions are also important contributing 
factors of road accidents. During the period of 1999-2008, a total of 1,479,691 road accidents were registered in 
Canada out of which approximately 30% accidents were occurred during hazardous weather conditions (11% during 
cloudy, 10% during rainfall, 6% during freezing rainfall, 1% visibility limitation and 1% during strong wind). The 
proportions of vehicle damages, human injuries and fatalities from road accidents during hazardous weather 
conditions are similar to that of total accidents. However, occurrence of road accidents, during different hazardous 
weather conditions, varies from season to season. During the winter season (December – February) of the period 
1999-2008, snowfall (not including drifting snow) is the most hazardous weather condition accounting for 15% - 
17% of the road accidents, 14%-16% of vehicle and property damages, 15% - 17% of injuries and 16% - 19% of 

 



fatalities (Figure 1). During the fall season (September – November) of the same period, rainfall was the most 
hazardous weather condition responsible for 12% - 17% of total road accidents, 12% - 17% vehicle and property 
damages, 12% - 17% injuries and 9% - 14% fatalities (Figure 1). During the summer season (June – August) of the 
same period, rainfall is also the most hazardous weather condition for 8% - 10% road accidents, 8% - 11% vehicle 
and property damages, 9% - 11% injuries and 6% - 8% fatalities (Figure 1). During the spring season (March – 
May) of the same period, rainfall and snowfall are the most hazardous weather conditions (Figure 1). For example, 
in the month of March, 13% road accidents, 12% associated vehicle and property damages, 13% injuries, and 13% 
fatalities were occurred during the snowfall. However, during the months of April and May, the most dangerous 
weather condition is rainfall (Figure 1). 

 
Figure 1: Road Accidents data during the period of 1999 – 2008 in Canada (Transport Canada, 2012) 
 
Hazardous weather may not be the principal cause of road accidents, but it is an important contributing factor 
because of reduced visibility and loss of vehicle control. Considering exiting road accident statistics, even a very 
small percentage of motor vehicle accidents is attributable to hazardous weather conditions, a significant effort 
should be made to discover how Canadian travellers are vulnerable to weather conditions and how such 
vulnerabilities may be overcome (Andrey, et al., 2003).  
 
The objective of this research is to study the impact of climate change on the hazardous weather-related road 
accidents. The New Brunswick province of Canada is taken as a case study.  
 
LITERATURE REVIEW  
 
Several studies (Cromley, 2007; Palutikof, 1991; Edwards, 1996) have examined the impact of hazardous weather 
conditions on road accidents. Edwards (1996) examined the spatial dimension of weather-related road accidents 
using accident data from UK Police Accident Report Forms. Edwards (1996) found a positive relationship between 
the incidences of weather hazards and road accidents. The analysis of road accident data at county level reveals a 
strong and consistent pattern of weather-accidents relationship, although the majority of the accidents in UK 
occurred during the non-hazardous and fine weather. The pattern of relationship between weather and accidents 
changes over seasons and locations – from north to south and west to east. Edwards (1999) conducted another study 
on the panel longitudinal data of road accidents in hazardous weather conditions for England and Wales. Like the 
outcomes of previous study (Edwards, 1996), this study also found out a relationship between accident occurrence in 
adverse weather and actual weather patterns. The county-wide data revealed that the cyclic nature of road accidents 
recorded in the various adverse conditions showed remarkable similarity to the occurrence of these hazards.  
 
Andrey et al. (2003) conducted a study to identify the relationship between weather and accident risk in mid-sized 
Canadian cities (with different climates) by using a standardized method. The cities are Halifax-Dartmouth, Ottawa, 
Quebec, Hamilton, Waterloo region, and Regina. Andrey et al. (2003) estimated that precipitation is associated with 
a 75% increase in traffic accidents and a 45% increase in related injuries, as compared to ‘normal’ seasonal 
conditions. The snowfall effects were more pronounced than rainfall effects for accidents as a whole (Andrey et al., 



2003). This study also revealed that the sensitivity to hazardous weather varied from city to city and the probability 
of risk of injury was lower than that of risk of accidents.  
 
Fridström et al. (1995) applied generalized Poisson regression to estimate the contributions of various factors to 
monthly accident rates. This study was conducted at the county or provinces of Denmark, Finland, Norway and 
Sweden for the period of 1973-1987. The study identified that rainfall increased the accidents while snowfall 
decreased the accidents in the study areas. In case of fatal accidents, rainfall increased in Denmark but had no 
significance in Norway and Sweden.  
 
Keay and Simmonds (2006) examined the impact of rainfall on daily road accidents in the metropolitan area of 
Melbourne, Australia, over the period of 1987–2002. The analysis of accident data, standardized for variation of 
traffic volume, indicated a complex effect of rainfall. Similarly, Andreescu and Frost (1998) identified a significant 
positive correlation between daily precipitation and daily number of accidents at Montreal, Canada using accident 
data from the period of 1990-1992.  
 
Eisenberg (2004) found out that rainfall led to a stronger increase in the number of fatal accidents after a dry spell 
because the precipitation makes the roads slippery by clearing the oil accumulated on roads during dry periods. 
Eisenberg (2004) also observed that some states of US experienced greatly increased fatal accidents rates in wet 
conditions (e.g. Arizona and Maryland), while others were hardly affected at all (e.g. Connecticut and Indiana). 
Similar results were estimated by Eisenberg and Warner (2005) considering the snowfall as the hazardous weather 
condition. Fridstrøm (1999) also got a similar result for Norway.  
  
Another important hazardous weather condition is fog or smog. Musk (1991) showed that accident rates and 
multiple accidents were increased during periods with thick fog. Drivers tend to maintain the speed or fail to reduce 
the speed under reduced visibility during hazardous weather conditions (White and Jeffrey, 1980; Musk, 1982). 
Drivers also tend to become isolated from the road environment while driving in fog, and cannot perceive speed and 
actual distance from the preceding vehicle (Miller, 1967). Moore and Cooper (1972) estimated that the number of 
accident injuries increased in fog, although the traffic volume decreased by 20%. Rosenfeld (1996) estimated that 
more than twice the numbers of people were killed in fog-related road accidents comparing to the death in 
hurricanes, lightning and tornadoes combined in US during the period of 1982-1991. 
  
Most of the above studies have examined accident occurrences at fixed locations; very few have investigated 
temporal and spatial aspects of weather-related road accidents. Andersson and Chapman (2011) studied traffic 
accidents across the West Midlands during the winter months (December to February) with the aim of applying 
UKCIP (UK Climate Impacts Programme) climate change scenarios to determine how the number of days requiring 
winter road maintenance may change in the future and how this subsequently may affect road traffic accident 
statistics. Andersson and Chapman (2011) identified that under UKCIP climate-change-scenarios there would be a 
significant change to the winters experienced in the West Midlands. The study concluded that traffic accidents 
would be reduced because the low freezing temperatures would not be so frequent and the winter season would be 
shorter. This research studied the relationship between the climate change scenarios and road accidents only for the 
winter season; however did not consider other hazardous weather conditions. Moreover, there is a scope of work to 
establish the frequency and spatial extent of such adverse weather conditions to calculate accident risk during 
hazardous weather conditions. 
 
METHODOLOGY 
 
Data 
 
The province of New Brunswick is located at the East coast in Canada and spans between 64˚ W- 69˚ W longitude 
and 45̊  N -48˚ N latitude (Figure 2). Data on road accidents, traffic flow, environmental conditions, and road 
geometry were collected for the road network of New Brunswick (Figure 2). The accident data, both single and 
multiple accidents, were based on police accident reports for the period of 1997-2007. The Accident Severity Index 
(ASI) was calculated summing the monetary values of Property Damage Only (PDO), injuries, and fatalities during 
accidents (Equation 1).  

 
For this study, a 30-year continuous record (1961-1990) of daily rainfall, snowfall and mean temperature from 
different sources were used. The selected data for the 1961-1990 study period include: observed daily data for seven 
climate zones of the province (Figure 2), NCEP re-analysis dataset, and large-scale simulation data from the 
CGCM3. Also, the large-scale simulation data from Canadian GCM under SRES-A2 scenario during 21st century 
were used to model the climate in the future. 



Attributes of Road Accidents  
 
Accident severity, merely explained by total number of accidents, can misinterpret the randomness and severity of 
the accidents in a road network (Afghari, 2012). This study defines an Accident Severity Index (ASI) explaining 
severity of accidents (Equation 1). The ASI incorporates the proportional weights of injuries (I), fatalities (F) and 
PDO. The exact monetary implication of an injury, a fatality or a PDO depends on many other factors. Afghari 
(2012) identified the average monetary values of fatalities and injuries of the road accidents at the province of New 
Brunswick were 15 and 5 times higher than that for PDO. This study takes such monetary mean values and 
normalizes them by the mean cost of a PDO to obtain the coefficients used on the ASI (Equation 1). 
 

FIPDOASI 155 ++=          (1) 
 
Since the goal of this study is to determine the climate impact on the accident severity, an Exposure to Weather-
Accident Severity (EWAS) Index was developed multiplying the severity of hazardous weather conditions for road 
accidents with ASI. The severity of hazardous weather condition is defined by 1-6 scale, where 1 defines ‘clear and 
cloudy’, 2 for ‘raining’, 3 for ‘snowing’, 4 for ‘sleet or hail or freezing rain’, 5 for ‘fog or smoke or smog’ and 6 for 
‘drifting snow’.    

 
Figure 2: Map of the study area – New Brunswick 

 
The relationship between hazardous weather condition and road accidents is complex. Edwards (1996) 
recommended that emphasis should be given on the interaction of weather conditions with other factors of road 
accidents such as road surface condition, vehicle types, road categories, vehicle manoeuver, and driver’s age, sex 
and experience. 
 
A wet road surface reduces the friction of the road surface in contact with a vehicle’s tires because a thin film of 
water builds up between the road surface and the tires (Brodsky and Hakkert, 1988; OECD, 1976). A greater 
stopping distance is required for this reduced friction. The reduction of friction is more apparent especially at the 
curves where vehicles attempt turning maneuvers (Brodsky and Hakkert, 1988). Road characteristics, such as 



divided or undivided multiple lanes of roads are important factors of road accidents. About two-thirds of fatalities 
and 30% of injuries in road accidents occur on rural roads, typically undivided with two lanes (Transport Canada, 
2011). 
 
Poor light condition may aggravate the poor visibility during hazardous weather conditions. Technical advances 
have further complicated the picture (Edwards, 1996). Recent developments on safety features, such as anti-lock 
brakes, four-wheel drive and traction control, have improved the vehicles’ handling in poor weather conditions. This 
may reduce or increase the accident risk. On the other hand, drivers may feel more confident when driving vehicles 
equipped with safety features and may take greater risk than they may otherwise do (Edwards, 1996). 
 
Factors such as light condition, surface condition and road characteristics are major factors of road accidents; 
however, most accidents can be attributed to human error (Evans, 1991; West et al., 1993). To evaluate the impact 
of weather on road accidents, factor of human judgment must be included (Edwards, 1996). Transport Canada 
(2011) statistics estimated that young drivers (15-34 years age) accounted for 40% of the fatalities and 45% of the 
serious injuries. Different studies (Abdel-Aty & Abdelwahab, 2004) identified that driver’s age and driver’s gender 
had significant impact on the road accidents. Driver’s age is associated with the road accidents because people have 
the Age-related macular degeneration (AMD) problem after a certain age (65 years and above) (RNIB, 2013).  The 
AMD is an eye condition that affects a tiny part of the retina at the back of the eye and causes problems with the 
central vision (RNIB, 2013). Royal National Institute of Blind People (RNIB, 2013) also explains that more women 
have AMD problem than men. This study assumes that older drivers (age 65 years and above) and female drivers are 
more vulnerable to adverse weather condition during driving because of the visibility problem.  
  
Based on the literature review, this study identified several factors of road accidents that can be affected by the 
hazardous weather condition such as: light condition, surface condition, road alignment, roadway characteristics, 
driver’s gender, driver’s age, driver’s driving experience and vehicle’s age. The selected variables were integrated 
with the weather condition in order to determine the combined-impact of weather and these attributes on the 
weather-accident severity (EWAS index). The redefined explanatory variables of EWAS index, with the extent of 
severity (ranking), are given in the Table 1.     
 
Table 1: Explanatory variables of the EWAS Index 

R
an

k 

Explanatory Variables 
Light- 
weather  

Surface-
weather  

Surface-
road 
alignment 

Roadway - 
surface 

Weather
-driver’s 
gender 

Weather – 
driver’s 
age 

Weather-
driving 
experience 

Weather  
-vehicles 
age 

1 Day light-
clear & 
cloudy  

Dry-all 
weather 
condition 

Dry-level 
& straight  

Dry-
undivided & 
one-way  

Male-
clear & 
cloudy 

Clear & 
cloudy-age 
<65yrs. 

Clear & 
cloudy- 
exp. ≥ 5yrs.  

Clear & 
cloudy-
new 

2 Day light-
raining 

Snow-clear 
& cloudy 

Dry-level 
& curve 

Dry-divided 
with barrier/ 
median  

Male-
raining 

Raining- 
age < 65 
years 

Raining- 
exp. ≥ 5 
years 

Raining-
new  

3 Day light-
snowing  

Snow-
raining 

Dry-
straight 
with grade 

Dry-
Undivided & 
2/multiple ln. 

Male-
snowing  

Snowing- 
age < 65 
years 

Snowing- 
exp. ≥ 5 
years 

Snowing
-new  

4 Day light-
freezing 
rain 

Snow-
snowing  

Dry-curve 
with grade 

Snow-
undivided & 
one-way 

Male-
freezing 
rain 

Freezing 
rain- age < 
65 years 

Freezing 
rain- exp. ≥ 
5 years 

Freezing 
rain-new  

5 Day light-
fog  

Snow-
freezing rain 

Dry- hilly 
road 

Snow-divided 
with barrier/ 
median 

Male-fog Fog- age < 
65 years 

Fog- exp. ≥ 
5 years 

Fog-new  

6 Day light-
drifting 
snow 

Snow-fog Snow-level 
& straight 

Snow-
Undivided & 
2/multiple 
lanes 

Male-
drifting 
snow 

Drifting 
snow- age 
< 65 years 

Drifting 
snow- exp. 
≥ 5 years 

Drifting 
snow-
new  

7 Dark-
clear & 
cloudy  

Snow-
drifting 
snow 

Snow-level 
& curve 

Ice-undivided 
& one-way 

Female-
clear & 
cloudy 

Clear & 
cloudy-age 
≥ 65 yrs. 

Clear & 
cloudy- 
exp. 2-5yrs. 

Clear & 
cloudy-
medium  

8 Dark-
raining  

Ice-clear & 
cloudy 

Snow-
straight 
with grade 

Ice-divided 
with barrier/ 
median 

Female-
raining 

Raining- 
age ≥ 65 
years  

Raining- 
exp. 2-5 
years 

Raining- 
medium  



R
an

k 

Explanatory Variables 
Light- 
weather  

Surface-
weather  

Surface-
road 
alignment 

Roadway - 
surface 

Weather
-driver’s 
gender 

Weather – 
driver’s 
age 

Weather-
driving 
experience 

Weather  
-vehicles 
age 

9 Dark-
snowing  

Ice-raining Snow-
curve with 
grade 

Ice-undivided 
& 2/multiple 
lanes 

Female-
snowing  

Snowing- 
age ≥ 65 
years 

Snowing- 
exp. 2-5 
years 

Snowing
- medium  

10 Dark-
freezing 
rain 

Ice-snowing Snow- 
hilly road 

Wet-
undivided & 
one-way 

Female-
freezing 
rain 

Freezing 
rain- age ≥ 
65 years  

Freezing 
rain- exp. 
2-5 years 

Freezing 
rain- 
medium  

11 Dark- fog Ice-freezing 
rain 

Ice-level & 
straight 

Wet-divided 
with barrier/ 
median 

Female-
fog  

Fog- age ≥ 
65 years  

Fog- exp. 
2-5 years 

Fog- 
medium  

12 Dark-
drifting 
snow 

Ice-fog Ice-level & 
curve 

Wet-
undivided & 
2/multiple 
lanes  

Female-
drifting 
snow 

Drifting 
snow- age 
≥ 65 years 

Drifting 
snow- exp. 
2-5 years 

Drifting 
snow- 
medium  

13 Dusk-
clear & 
cloudy 

Ice-drifting 
snow 

Ice-straight 
with grade 

   Clear & 
cloudy- exp 
< 2 years 

Clear & 
cloudy-
old  

14 Dusk-
raining 

Wet-clear & 
cloudy 

Ice-curve 
with grade 

   Raining- 
exp. < 2yrs. 

Raining- 
old  

15 Dusk-
snowing  

Wet-raining Ice- hilly 
road 

   Snowing- 
exp. < 2yrs. 

Snowing
- old  

16 Dusk-
freezing 
rain 

Wet-
snowing 

Wet-level 
& straight  

   Freezing 
rain-exp. < 
2 years 

Freezing 
rain- old  

17 Dusk-fog Wet-freezing 
rain 

Wet-level 
& curve 

   Fog- exp.< 
2 years 

Fog- old  

18 Dusk-
drifting 
snow 

Wet-fog Wet-
straight 
with grade 

   Drifting 
snow- 
exp.< 2 yrs. 

Drifting 
snow- 
old  

19 Dawn-
clear & 
cloudy 

Wet-drifting 
snow  

Wet-curve 
with grade 

     

20 Dawn-
raining 

 Wet-hilly 
road 

     

21 Dawn-
snowing 

       

22 Dawn-
freezing 
rain 

       

23 Dawn-fog        
24 Dawn-

drifting 
snow 

       

 
Methods for accident analysis  
 
Conventional multiple linear regression analysis, assuming that the dependent variable is continuous and normally 
distributed with a constant variance, are not applicable to accident analysis. This analysis lacks the distributional 
property necessary to adequately describe random, discrete, and non-negative events (Miaou, et al., 1992; Miaou 
and Lum, 1993). Accident severity indices normally use frequency models or correlation models structured on the 
basis of multivariate Poisson regression analysis, negative binomial regression analysis, or multivariate Poisson-
lognormal regression analysis (El-Basyouny and Sayed, 2009). Wang et al. (1998) proposed a Poisson regression 
model (PR) to quantify the relationship between accident frequency and road geometry for Minnesota’s rural arterial 
highways. The previous models ignored to measure the ability of explanatory factors to explain the accident severity 
and frequency. Multivariate Poisson-lognormal regression analysis is often preferred for accident severity indices as 
this analysis accounts for over-dispersion (extra Poisson variation) that is often observed in accident data (El-



Basyouny and Sayed, 2009). Moreover, this analysis also allows a full general correlation structure (El-Basyouny 
and Sayed, 2009).  
 
Various researchers (Poch and Mannering, 1996; Abdel-Aty and Radwan, 2000; Sawalha and Sayed, 2001; Zang 
and Ivan, 2005) applied the Negative Binomial Regression (NBR) models in order to explain the relationship 
between the explanatory variables and road accident severity. Persaud and Musci (1995) investigated the 
relationship among hourly traffic volume, road geometries, and accident time (day light) on two- lane rural roads by 
applying the NBR model. The analysis revealed that accident potential was higher during the night for single 
accident vehicles. In case of multi-vehicle accidents, the accident potential was higher during daytime. Poch and 
Mannering (1996) analyzed the importance of geometric features and traffic aspects on the road accidents. Abdel-
Aty and Radwan (2000) identified that traffic flow and road geometries are the major threats to road safety. 
Mountain et al. (1996) and Sawalha and Sayed (2001) conducted their research works in UK and Greater 
Vancouver, respectively. They identified that the length of road sections, traffic flow, intersections in corridors, and 
road alignment were the influential attributes of road accident severity. Pardillo and Llamas (2003) defined 
homogeneous sections with suitable lengths for two-lane rural roads in Spain. They derived that road accidents had 
significant correlations with vehicles’ speed, density of accessibility, average stopping sight distance and road 
geometry issues. Zang and Ivan (2005) found out vehicles’ speed and road alignment significantly influenced the 
road accidents.  
  
Eisenberg (2004) applied the NBR method to estimate the relationship between precipitation and traffic accidents in 
the US during the period of 1975-2000.  The amount of precipitation, snowfall and snow depth were considered as 
the explanatory variables of accident counts. Eisenberg (2004) considered the location-month combination as a 
dummy variable and included vehicle-mile traveled (VMT) for each location-year as the ‘offset’ term in the 
regression model. 
 
Since both of the NBR and PR models were applied to estimate the relationship of accident severity with its 
explanatory variables, this study applies both models. The relationship between EWAS index for a particular 
accident incident (i) at a particular month (t) can be expressed by Equation 2. 
 

     (2) 
 

 is intercept, and  are regression coefficients with the assumption that the EWAS index follows a 
negative binomial distribution with parameters  ( ) and  .  That is, the probability that the 
EWAS index is defined by a known of set of predictor variables, . The NBR function can be expressed 
by Equation 3.  
 

    (3) 
  
On the other hand, assuming the EWAS index follows a Poisson distribution, the relationship between EWAS index 
for a particular accident incident (i) at a particular month (t) can be expressed by Equation 4. 
 

      (4) 
 
Method for climate change modeling 
 
To determine the impact of climate change on the road accident severity, this study needs to understand climate 
change scenarios. The Intergovernmental Panel on Climate Change (IPCC) presented a supplementary report in 
1992 and proposed six different climate change scenarios based on the world population and political, social, 
economical, technological, and environmental changes in the world by the end of 21st century. This report was 
assessed in 1995 and the IPCC published the Special Report on Emission Scenarios (SRES) in 2001. The IPCC 
proposed four different families of climate change scenarios as A1, A2, B1, and B2. These scenarios predict the 
GHGs emission in the atmosphere by the end of 21st century. 
 
Earth-science scientists developed a series of Global Climate Models (GCMs) to predict the future changes in the 
world climate after getting strong evidence on climate change. These GCMs are coupled with emission scenarios to 
model the effects of human activities on the future climate and predict the atmospheric parameters by the end of 21st 



century. GCMs have been recognized to be able to represent reasonably well the main features of the distribution of 
basic climate parameters at global scales, but outputs from these models are often characterized by coarse 
resolutions that limit their direct application for many impact studies. Hence, downscaling methods have been 
proposed for describing the linkage between the large-scale climate variables given by GCMs to the observed 
predictands at local sites (Nguyen et al., 2006). These downscaling methods are based on the assumption that large-
scale weather exhibits a strong influence on local-scale weather conditions (Fowler et al., 2007). In general, there are 
two broad downscaling methods: dynamical downscaling and statistical downscaling (Wilby & Dawson, 2007; Xu, 
1999; Yarnal et al., 2001). Dynamical downscaling methods or Regional Climate Models (RCM) are based on 
physical dynamics between synoptic variables (as predictors) and local-scale variables (as predictands) and it uses 
GCM variables to define time-varying atmospheric boundary conditions around a finite domain, while the statistical 
downscaling methods rely on the empirical relationship between regional scale predictors and local scale 
predictands (Wilby & Dawson, 2007). 
 
This study applied Statistical DownScaling Method (SDSM) to evaluate the changes in the number of rainy, snowy, 
and freezing days in New Brunswick. The SDSMs are classified into three categories based on the nature of the 
chosen predictors: Perfect Prognosis (PP), Model Output Statistics (MOS) and Stochastic Weather Generators 
(SWGs). Each of these downscaling methods has their own strengths and weaknesses that have been summarized in 
several review papers (Hewitson & Crane, 1996; Maraun et al., 2010; Wilby & Wigley, 1997; Xu, 1999). The PP 
method was applied in this study. 
 
The PP method establishes a statistical relationship between observed large-scale predictors and observed local-scale 
predictands (i.e. precipitation, temperature). In the context of climate change, the main assumption of the PP method 
is the capability of the simulated large-scale predictors in representing a physically plausible realization of the future 
climate (Maraun, et al., 2010). This method divides downscaling scheme into two steps: first, the selection of 
informative large-scale predictors, and second the development of a statistical model for making a linkage between 
the large-scale predictors and the local-scale predictands. The ideal predictors should be informative, make physical 
sense, strongly correlated with the target variable, realistically represented by the GCMs while capturing multiyear 
variability, and finally collectively reflect the climate change signal (Wilby et al., 2004).  
 
In this study, the observed data in seven different climate zones of New Brunswick province (Figure 2) for 30 years 
had been applied to select the large-scale predictors. The best predictors, with the highest explained variance, are 
selected. The reanalysis data (NCEP) during calibration period (1961-1975) had been used to estimate a relationship 
between the selected predictors and predictands. The robustness of developed relation was validated using the 
reanalysis data at validation period (1976-1990). The calibration and validation procedure certifies the correctness 
and robustness of the selected predictors and if there were a good fit between observed and calibrated predictands 
during the validation period the estimated relationship had been applied to GCM predictors to generate scenarios 
during reference and future time period. Finally, the number of rainy and snowy days in each month were calculated 
assuming days with more than 1 mm of precipitation as the rainy days and days with mean temperature of -4ºC to 0 
ºC as the freezing days. 
  
ANALYSIS AND DISCUSSION  
 
Spatial-temporal analysis of road accidents 
 
The NBR and PR analysis were executed to estimate the relationship between the EWAS Index and the selected 
predictors. The fitness of the models was verified by testing the likelihood statistics, Wald chi-square test and 
likelihood ratio test of random effects. Log likelihood statistics estimated for determining whether convergence to 
stable estimates had been attained for the NBR and PR models. Since it uses maximum likelihood estimate, the 
maximum difference between the log likelihood of null and full model explains the fitness of the model. 
 
The Wald statistic represents the square of the ratio between the regression coefficient and its standard error. This 
statistic follows a chi-square distribution with degree of freedom (df), which is equal to the standard normal 
distribution squared. The Chi-Square distribution is merely the distribution of the sum of the squares of a set of 
normally distributed random variables. Its value stems from the fact that the sum of random variables from any 
distribution can be closely approximated by a normal distribution. Wald chi-square statistics (df = 8), with a p-value 
of 0.00, show the statistical significance of both NBR and PR models (Table 2).   
 
The likelihood-ratio tests define whether the data are better modeled using a panel structure or whether a pooled 
structure is preferred. The likelihood ratio value with a p-value of 0.00 justifies that the random effects (panel) 
parameterization with beta distribution is preferred over the pooled (constant dispersion) model (Table 2).  



 
The statistical significance of the explanatory variables of the EWAS index is displayed by the p-value, listed under 
the column P>│Z│. For both of the regression models (negative binomial and Poisson), the p-value is 0.000, below 
the standard threshold of 0.05, meaning that the coefficients of the explanatory variables are statistically significant 
(Table 3). 
  
Table 2: Fitness of regression models for all accident data of New Brunswick 

Fitness parameters Negative Binomial regression Poisson regression 
Log likelihood (without model) -563460 -563460 
Log likelihood (with model) -301937.26 -563234.19 
Wald chi square (8) 
Prob > chi square 

8653.86 
0.000 

127227.43 
0.0000 

Likelihood-ratio test vs. pooled: chibar2(01) 
Prob>=chibar2 

77.58 
0.000 

431.31 
0.000 

 
The NBR and PR models explain the positive relationship between the explanatory variables and the EWAS index 
except in the cases of surface-road alignment and surface-road characteristics. The potentiality of weather-accident 
severity will be increased with the adverse light condition and adverse weather condition. For every one rank 
increases in light-weather condition, the log count of the EWAS index is expected to increase by 0.006 and 0.024 for 
NBR and PR models, respectively (Table 3). That means, a single unit degradation of light-weather condition would 
increase the weather-accident severity (EWAS) by 0.6% for NBR model and 2.4% for PR model (Table 3). 
Similarly, the weather-accident severity can be increased with the poor surface conditions and poor weather 
conditions. A single unit degradation of surface-weather condition can contribute 7.1% (NBR model) and 7.6% (PR 
model) increase of weather-accident severity (Table 3).   
 
Female drivers are more vulnerable to weather-accident severity comparing to the male drivers. If the driver is 
female, the weather-accident severity (EWAS) can be increased by 2.4% (NBR model) and 3.7% (PR model) (Table 
3). Similarly, the older drivers are more vulnerable to weather-accident severity because of the visibility problems. 
Senior drivers, with an age of 65 years and above, increase the probability of weather-accident severity by 3.1% 
(NBR model) and 5.6% (PR model) (Table 3).  
  
Table 3: Model summary for Negative Binomial regression and Poisson regression models 

Variables  Coefficient Std. error Z-value P>│Z│ 95% confidence internal 
NBR PR NBR PR NBR PR NB

R 
PR NBR PR 

Light-weather 
condition 

.006 .024 .0007 .0003 9.80 81.34 0.00 0.00 .006 .008 .006 .008 

Surface-weather 
condition 

.071 .076 .0024 .0010 29.47 73.86 0.00 0.00 .066 .075 .066 .075 

Surface-road 
alignment  

-.011 .004 .0019 .0008 -5.40 4.67 0.00 0.00 -.014 -.007 -.014 -.007 

Surface-road 
character 

-.048 -.065 .0039 .0017 -12.3 -37.9 0.00 0.00 -.055 -.040 -.055 -.040 

Weather-
driver’s gender 

.024 .037 .0009 .0004 27.63 97.06 0.00 0.00 .022 .025 .022 .025 

Weather-
driver’s age 

.031 .056 .0011 .0005 27.07 113.0 0.00 0.00 .029 .034 .029 .034 

Weather-
driver’s 
experience  

.013 .023 .0006 .0003 21.10 84.39 0.00 0.00 .012 .015 .012 .015 

Weather-
vehicle’s age 

.014 .019 .0005 .0002 25.47 80.25 0.00 0.00 .013 .015 .013 .015 

 
The less driving experience increases the probability of weather-accident severity because of less driving experience 
in the adverse weather and the lack of knowledge of what-to-do during the adverse weather conditions. Less driving 
experience increases the accident severity by 1.3% (NBR model) and 2.3% (PR model) during the adverse weather 
conditions (Table 3). In most of the driving cases on highway, the less-experienced drivers suddenly reduce the 
speed of the vehicles or overlap the lane demarcation because of the poor visibility and collided by the following 
and side vehicles, respectively.   



 
The old vehicles are more vulnerable to weather-accident severity comparing to the new vehicles probably because 
the brakes and traction control of new vehicles are obviously performing better than those of old vehicles. The older 
vehicles contribute 1.4% (NBR model) and 1.9% (PR model) increase of accident severity during the adverse 
weather conditions (Table 3). This result shows the opposite explanation of the findings of a study conducted by 
Edwards (1996). Edwards (1996) shows that drivers of new vehicles are taking more risk and vulnerable to road 
accidents as the vehicles are well-equipped with different safety features. The positive relation between weather-
vehicle’s age and weather-accident severity reveals that new vehicles with well-equipped safety features are less 
exposed to weather-accident severity.    
 
The surface-road characteristics attribute has inverse relationship with the EWAS index in both regression models, 
while surface-road alignment has inverse relationship with the EWAS index only in the NBR model. One-unit 
increase of surface-road character severity can contribute 4.8% (NBR model) and 6.5% (PR model) decrease of 
accident severity during the adverse weather conditions (Table 3). Similarly, the NBR model shows that one-unit 
increase of surface-road alignment severity can contribute to 1.1% decrease of accident severity during the adverse 
weather conditions (Table 3). The drivers are at their highest caution when driving at hilly and curves (vertical and 
horizontal) roads, especially during the poor surface-weather conditions. This is why; less weather-accident severity 
is observed for the poor-surface road alignment during the hazardous weather condition. Similarly, the drivers are 
more alert driving on an undivided road with two or multiple lanes especially when the surface and weather 
conditions are adverse to drive.  
 
The regression models were performed for each census division of New Brunswick in order to determine the spatial-
longitudinal behavior of the EWAS index with respect to the predictor variables in each census division. The fitness 
tests verified the fitness of the regression models (Table 4 and 5) except in the case of NBR model for the Saint John 
census division (Table 4).  
  
Table 4: Fitness of NBR model for census divisions of New Brunswick 

Census 
Division 

 

Log likelihood 
(without model) 

Log likelihood 
(with model) 

Wald chi2 (prob> 
chi2) 

Likelihood-ratio test vs. 
pooled chibar2 
(Prob>=chibar2) 

Saint John -58476.95 -31676.423 1014.02 (0.000) 1.24 (0.132) 
Charlotte -13882.19 -6898.908 280.66 (0.000) 14.38 (0.000) 
Sunbury -13686.54 -6701.22 224.13 (0.000) 28.14 (0.000) 
Queens -8468.78 -3955.98 119.64 (0.000) 28.93 (0.000) 
Kings -38085.54 -20262.16 635.41 (0.000) 28.70 (0.000) 
Albert -12250.65 -6569.62 207.85 (0.000) 15.40 (0.000) 
Westmorland -131655.56 -78416.51 2263.90 (0.000) 50.23 (0.000) 
Kent -19137.27 -9925.10 326.43 (0.000) 33.18 (0.000) 
Northumberland -40210.328 -21530.925 522.42 (0.000) 12.25 (0.000) 
York -76901.75 -43028.64 1113.55 (0.000) 14.41 (0.000) 
Carleton -19417.75 -9071.76 324.16 (0.000) 25.13 (0.000) 
Victoria -17720.7 -9057.26 263.73 (0.00) 2.55 (0.055) 
Madawaska -22492.47 -11833.5 417.08 (0.000) 15.91 (0.0000 
Restigouche -18931.2 -9477.52 323.8 (0.000) 44.01 (0.000) 
Gloucester -66729.16 -32633.4 987.7 (0.000) 25.32 (0.000) 

 
Table 5: Fitness of PR model for census divisions of New Brunswick 

Census 
Division 
 

Log likelihood 
(without model) 

Log likelihood 
(with model) 

Wald chi2 (prob> 
chi2) 

Likelihood-ratio test vs. 
pooled chibar2 
(Prob>=chibar2) 

Saint John -58476.95 -58406.812 14365.94(0.000) 138.08 (0.000) 
Charlotte  -13882.197 -13784.954 4794.70 (0.000) 186.45 (0.000) 
Sunbury -13686.53 -13554.96 3220.54 (0.000) 262.41(0.000) 
Queens -8468.78 -8273.09 1772.98 (0.000) 391.07 (0.000) 
Kings -38085.55 -37887.67 7778.50 (0.000) 395.04 (0.000) 
Albert -12250.65 -12145.96 3476.00 (0.000) 207.85 (0.000) 
Westmorland -131655.56 -131455.25 27556.59 (0.00) 397.32 (0.000) 
Kent -19137.27 -18965.96 4439.14 (0.000) 341.20 (0.000) 



Census 
Division 
 

Log likelihood 
(without model) 

Log likelihood 
(with model) 

Wald chi2 (prob> 
chi2) 

Likelihood-ratio test vs. 
pooled chibar2 
(Prob>=chibar2) 

Northumberland -40210.328 -40105.428 6617.60 (0.000) 209.67 (0.000) 
York -76901.75 -76832.72 13341.94 (0.000) 137.38 (0.000) 
Carleton -19417.75 -19161.23 8298.4 (0.000) 496.61 (0.000) 
Victoria -17720.7 -17661.8 3828.87 (0.000) 117.00 (0.000) 
Madawaska -22492.4 -22414.07 7586.3 (0.000) 151.68 (0.000) 
Restigouche -18931.2 -18765.5 6788.8 (0.000) 326.3 (0.000) 
Gloucester -66729.16 -66605.7 17462.2 (0.000) 241.00 (0.000) 

 
The relationship between the explanatory variables and the EWAS index in each census division of New Brunswick 
is explained by NBR model (Table 6) and PR model (Table 7). The NBR and PR models estimated that the surface-
weather condition, weather-driver’s gender, weather-driver’s age, weather-driver’s experience and weather-vehicle’s 
age have strong positive relations with the EWAS index for each of census division of New Brunswick (Table 6 and 
7). These results (Table 6 and 7) echo the same outcomes from the NBR and PR analyses for the New Brunswick 
(Table 3). Similar to the province-wise (New Brunswick) scenario (Table 4), in most of the census divisions, the 
surface-road character has negative relationship with the weather-accident severity except in Sunbury (for NBR and 
PR models), Carleton (PR model) and Victoria (PR model) (Table 6 and 7). However, the positive contribution of 
weather-road character to weather-accident severity index (EWAS) is very low (Table 6 and 7).  
 
This study observes a mixed relationship between surface-road alignment variable and the EWAS index for different 
census division. The relationship is positive at Charlotte (0.6%), Queens (4.5%), Kings (0.7%), Albert (1.25%), 
Northumberland (0.04%), and Restigouche (1.5%) according to the estimation of NBR model (Table 6).  
 
Table 6: Regression coefficient of explanatory variables in NBR model 
Census 
Division 

 

  Explanatory variables 
Light-
weather 
condition 

Surface-
weather 
condition 

Surface-
road 
alignment 

Surface-
road 
character 

Weather-
driver’s 
gender 

Weather-
driver’s 
age 

Weather-
driver’s 
experience 

Weather-
vehicle’s 
age 

Saint John .017 .05 -.009 -.0228 .0226 .0332 .009 .014 
Charlotte .0012 .078 .006 -.089 .0233 .051 .0169 .0189 
Sunbury -.003 .055 -.0268 .008 .029 .041 .013 .017 
Queens -.008 .0404 .045 -.094 .0217 .0414 .0176 .0126 
Kings -.0015 .0708 .007 -.0726 .0232 .0288 .0121 .0142 
Albert .010 .0964 .0125 -.121 .022 .0257 .01 .014 
Westmorland .012 .08 -.015 -.054 .02 .0276 .0144 .009 
Kent .003 .093 -.00009 -.0935 .0199 .0184 .02 .0169 
Northumberland .0006 .059 .0004 -.052 .0259 .027 .0159 .0159 
York .008 .052 -.006 -.027 .024 .032 .009 .009 
Carleton .007 .093 -.002 -.102 .033 .044 .012 .02 
Victoria -.002 .04 -.001 -.015 .016 .048 .018 .014 
Madawaska .015 .078 -.041 -.017 .03 .035 .012 .018 
Restigouche .024 .065 .015 -.093 .032 .038 .023 .013 
Gloucester .006 .09 -.003 -.09 .027 .024 .014 .015 
 
Table 7: Regression coefficient of explanatory variables in PR model 
Census 
Division 

Explanatory variables 
Light-
weather 
condition 

Surface-
weather 
condition 

Surface-
road 
alignment 

Surface-
road 
character 

Weather-
driver’s 
gender 

Weather-
driver’s 
age 

Weather-
driver’s 
experience 

Weather-
vehicle’s 
age 

Saint John .033 .052 -.009 -.0109 .035 .057 .017 .0207 
Charlotte .0158 .056 .0124 -.048 .032 .0904 .029 .038 
Sunbury .005 .0448 -.018 .053 .045 .0557 .018 .0157 
Queens .0185 .0502 .0957 -.174 .0416 .069 .025 .013 
Kings .01 .104 .039 -.164 .024 .053 .0197 .0164 
Albert .023 .141 .052 -.237 .034 .0508 .0196 .0256 
Westmorland .0259 .095 .0098 -.105 .0325 .0476 .0248 .013 



Census 
Division 

Explanatory variables 
Light-
weather 
condition 

Surface-
weather 
condition 

Surface-
road 
alignment 

Surface-
road 
character 

Weather-
driver’s 
gender 

Weather-
driver’s 
age 

Weather-
driver’s 
experience 

Weather-
vehicle’s 
age 

Kent .0197 .129 .005 -.135 .024 .02 .03 .02 
Northumberland .0157 .0507 .004 -.033 .042 .048 .026 .021 
York .029 .042 -.007 .0008 .034 .055 .018 .012 
Carleton .016 .168 .049 -.27 .058 .068 .019 .032 
Victoria .006 .049 -.008 .009 .024 .085 .024 .013 
Madawaska .04 .109 -.049 -.037 .045 .055 .017 .027 
Restigouche .05 .06 .038 -.099 .051 .075 .04 .013 
Gloucester .024 .08 .02 -.096 .042 .05 .023 .02 
 
Similarly, the PR model estimates the positive relationship between surface-road alignment variable and the EWAS 
index at Charlotte (1.24%), Queens (9.57%), Kings (3.9%), Albert (5.2%), Westmortland (0.9%), Kent (0.5%), 
Northumberland (0.4%), Carleton (4.9%), Restigouche (3.8%) and Gloucester (2%) (Table 7). These positive 
relationships explain that the combination of poor road alignment (e.g. hilly road, curved road etc.) and road surface 
condition (wet, ice, snow etc.) aggravates the weather-accident severity in these areas.    
 
Climate change modeling 
 
The analysis of changes in rainy days shows that the number of rainy days will increase during all months in New 
Brunswick except in Aroostook zone in which the number of rainy days will decrease during summer and will 
increase during other months. Number of snowy days may decrease for all zones in the province except in Moncton 
zone in which the number of snowy days may increase during January and February. Also, there is an increasing 
trend in Aroostook zone during the months that snowfall occurs. Number of freezing days will have the same trend 
in all zones of New Brunswick and it will increase during winter and March and it will decrease in other months. 
Generally, the average temperature will increase in future and this increase will cause more freezing days (in the 
range of -4 º C to 0 º C) during winter and March.  
 
The average changes in the ratio of annual rainy, snowy, and freezing day were summarized in Table 8. The table 
shows that the number of rainy days may increase for all of the zones and the number of snowy days and freezing 
days may decrease or stay the same for most of the zones in the province. More specifically, the average number of 
rainy days may increase by 34, 31, 24, and 21 days per year during 2071-2100 at Doaktown, Fredericton, 
Aroostook, and Miramichi zone respectively and the average number of freezing days may decrease by 9, 8, 5, and 4 
days per year during the same period at Moncton, Saint John, Fredericton and Aroostook zone respectively and it 
may increase by 3 days per year in Doaktown. 

  
Table 8: Annual average changes in the ratio of rainy, snowy and freezing days in New Brunswick 

Zone 

Rainy Days Snowy days Freezing days 
2011 2041 2071 2011 2041 2071 2011 2041 2071 

Aroostook 0.01 0.04 0.07 0.01 0.01 0.02 0.00 0.00 -0.01 

Miramichi 0.02 0.04 0.06 -0.01 -0.01 -0.01 0.00 0.00 0.00 

Doaktown 0.03 0.06 0.09 0.00 0.00 0.00 0.00 0.01 0.01 

Fredericton 0.03 0.06 0.09 -0.02 -0.02 -0.02 0.00 0.00 -0.01 

Kedgwick 0.00 0.03 0.02 0.01 0.00 0.00 0.00 0.00 0.00 

Moncton 0.01 0.01 0.00 0.02 0.03 0.04 0.00 -0.01 -0.02 

Saint John 0.02 0.03 0.03 0.00 -0.01 -0.02 0.00 -0.01 -0.02 
 
Impact of climate change on accidents 
 
The NBR and PR models estimates that the combined effects of hazardous weather conditions and different 
predictors of road accidents (which can be affected by hazardous weather conditions) are enormous not only in the 
province-wise scenario, but also in each census division. The increase of adverse weather conditions (e.g. raining, 
snow and freezing rain) should have an adverse impact on accident severity. The climate change scenario for three 
different periods (2011-2040, 2041-2070, 2071-2100) reveals that the ratio of hazardous weather days will be 



increased in most of the climate zones of New Brunswick during the 21st century. More hazardous weather will 
result in increased accident severity.  
 
CONCLUSION 
 
The Road Safety Strategy 2015, developed by Transport Canada, identifies impaired driving, speed and aggressive 
driving, and occupant protection as the factors of road accidents. Uncontrollable meteorological conditions are also 
important contributing factors for road accidents. The objective of this research is to study the impact of climate 
change on the hazardous weather-related road accidents. The New Brunswick province of Canada is considered as a 
case study.  
 
The road accident data of New Brunswick were collected from the police accident reports. This study developed an 
Exposure to Weather-Accident Severity (EWAS) Index multiplying the severity of hazardous weather conditions 
for road accidents with the Accident Severity Index (ASI). The ASI incorporated proportional monetary 
implications of injuries, fatalities, and PDO. The road accident attributes, which could be affected by the hazardous 
weather conditions, were considered as the explanatory factors of the EWAS index. These are light-weather 
condition, road surface-weather condition, road surface-road alignment, roadway-surface condition, weather-
driver’s age, weather-driver’s gender, weather-driving experience, and weather-vehicle’s age. 
  
For climate change modeling, this study used a 30-year continuous record (from 1961-1990) of daily rainfall, 
snowfall and mean temperature. The selected data included observed daily data for seven climate zones in the 
province, NCEP re-analysis dataset, and large-scale simulation data from the CGCM3. This study also used large-
scale simulation data from Canadian GCM under SRES-A2 scenario during 21st century. 
  
The relationship between the EWAS index and predictors was examined by the negative binomial regression (NBR) 
and Poisson regression (PR) models.  The NBR and PR models explain the positive relationship between the 
explanatory variables and the EWAS index except in the cases of surface-road alignment and surface-road 
characteristics. The drivers are at their highest caution when driving at hilly terrain and curves (vertical and 
horizontal), especially on poor surface-weather conditions. This is why; less weather-accident severity is observed 
for the poor-surface road alignment during the hazardous weather condition. Similarly, the drivers are more alert 
driving on an undivided road with two or multiple lanes especially when the surface and weather conditions are 
adverse to drive. 
 
The spatial pattern of the EWAS index with respect to explanatory variables was examined for the fifteen census 
divisions of New Brunswick. The NBR and PR models estimated that the surface-weather condition, weather-
driver’s gender, weather-driver’s age, weather-driver’s experience and weather-vehicle’s age have strong positive 
relation with the EWAS index for each of the census divisions of New Brunswick. These echo the same outcomes 
from the NBR and PR analyses for the New Brunswick province. Similar to the province-wise scenario, in most of 
the census divisions, the surface-road character has negative relationship with the weather-accident severity except 
in Sunbury (for NBR and PR models), Carleton (PR model) and Victoria (PR model). The PR model estimates the 
positive relationship between surface-road alignment variable and EWAS index at Charlotte, Queens, Kings, Albert, 
Westmortland, Kent, Northumberland, Carleton, Restigouche, and Gloucester. These positive relationships explain 
that the combination of poor road alignment (e.g. hilly road, curved road etc.) and road surface condition (wet, ice, 
snow etc.) aggravates the weather-accident severity in these areas.    
 
The climate change modeling estimated that the number of rainy days may increase for all of the climate zones and 
the number of snowy days and freezing days may decrease or stay the same for most of the zones in the province. 
For example, the average number of rainy days may increase by 34, 31, 24, and 21 days per year during 2071-2100 
at Doaktown, Fredericton, Aroostook, and Miramichi zone respectively and the average number of freezing days 
may decrease by 9, 8, 5, and 4 days per year during the same period at Moncton, Saint John, Fredericton and 
Aroostook zone respectively. The freezing days may increase by 3 days per year in Doaktown. More hazardous 
weather will result in increased accident severity. This study suggests that the Road Safety Strategy 2015 of 
Transport Canada should not only adopt the holistic approaches based on the impaired driving, speed and aggressive 
driving, occupant protection, it should also take protective measures for the hazardous weather conditions to reduce 
the accident severity. 
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