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Abstract 
 
In the context of Census Bureau’s Small Area Health Insurance Estimation (SAHIE) program, we propose a 
nonlinear hierarchical Bayes (HB) model with log link function such that it can be cast into a log linear mixed with 
additive random components (LLMARC) model which makes it amenable to usual frequentist Linear Mixed model 
(LMM)-type treatment. The reason for this is that neither Bayesian nor frequentist solution by itself is adequate for 
the desired features of the final small area estimates (SAEs) such as frequentist-type built-in benchmarking of lowest 
level (i.e., smallest domain level) synthetic estimates to reliable higher level direct estimates, and hierarchical ratio-
adjustments of lower level SAEs to higher level SAEs (or direct estimates) for internal consistency; and benchmark-
adjusted  posterior distributions for point, variance, and interval estimation. To this end, a hierarchically- aggregated 
frequentist with hierarchical Bayes (HFHB) method is proposed which uses LLMARC to build in frequentist 
properties and a new construct of HFHB-posterior to build in Bayesian properties in the final SAEs. The proposed 
HFHB solution starts with a building block model so that a single multivariate model can be used for both county 
and state level estimates in the SAHIE context.  Modeling of estimated domain total counts instead of estimated 
domain means is considered because domain counts can be aggregated to derive a group level model without 
changing model parameters but with a stable observed variance-covariance matrix. Under LLMARC, we can obtain 
a closed form expression of the marginal mean after integrating out the random effect which permits model 
diagnostics somewhat analogous to the usual LMM case. The HFHB-posterior allows for different conditioning 
datasets for different parameters and updating of posteriors which is needed to preserve higher level SAEs and to 
use them as benchmarks for lower level SAEs. The HFHB method is also used to preserve previous time point 
estimates while updating current estimates through state space modeling as a means to take advantage of temporal 
correlations.  
 
Keywords:  Additive Random Components with Non-linear Mean Function; Building-Block Model; Built-in 
Benchmarking; Frequentist-type Model Diagnostics; Hierarchical Bayes; Marginal-Conditional MCMC 
 
1. Introduction 

 
The problem considered in this paper is complicated and challenging but very interesting and rather practical. It 
grew out of the desire to consider alternatives to currently used hierarchical Bayes (HB) methodology in US Census 
Bureau’s Small Area Health Insurance Estimation (SAHIE) program based on the American Community Survey 
(ACS) data. SAHIE is an important and useful program for producing health insurance coverage (IC) by income-to-
poverty ratio (IPR) categories for various small areas or domains defined by geo-demographics (county by age by 
sex by race/ethnicity). It uses a sophisticated nonlinear HB methodology combined with frequentist-type ratio 
adjustments to benchmark lower level small area estimates (SAEs) to higher level estimates; see Bauder, Luery, and 
Szelepka (2012). The complexity of the SAHIE model seems to arise naturally as it presents a difficult application 
of SAE with random benchmark controls for internal consistency, robustification, and face validity.  Nevertheless 
for the sake of comparison and for establishing validity of the current methodology, it would be useful to have an 
alternative methodology under a weaker set of assumptions with valid frequentist-type model diagnostics for 
building user confidence, and promoting wide acceptance and demand of SAHIE estimates.  
 
In this paper we propose a Bayesian-frequentist integrated approach which is motivated from the observation that 
neither Bayesian nor frequentist existing methods themselves provide an adequate solution for the problem under 
consideration; see Rao (2003) and Pfeffermann (2013) for a review of existing methods. It is somewhat in the same 
spirit as the calibrated Bayes approach of Little (2011) where inferences considered under a model are Bayesian but 
frequentist methods are used for model development and model checking. The proposed Bayesian-frequentist 
integrated approach, however, goes beyond calibrated Bayes in that both frequentist and Bayesian aspects play an 
equally important role and hence the need for an integrated approach for making inferences. It may be remarked that 
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in the case of linear mixed models (LMM), both frequentist and Bayesian methods do lead to similar inferences; see 
e.g., Singh, Stukel and Pfeffermann (1998). The proposed method for nonlinear mixed models termed hierarchically 
aggregated frequentist with hierarchical Bayes (HFHB) allows for several desirable features such as provision of a 
single lowest level or building block model for county and states, modeling estimated domain totals instead of 
estimated domain means, avoiding the need for smoothing of the observed variance-covariance matrix by grouping 
direct B-level estimates and fitting the original model at the group level which also helps in the normality 
assumption of the observation error, incorporating spatial and temporal correlations as surrogates for additional 
covariates or predictors, and variance and interval estimation of final estimates ratio-adjusted to higher level SAEs 
as benchmarks. The HFHB method for nonnegative outcome variables uses a log linear mixed model for the mean 
function with normal random effects in order to obtain a log linear mixed model with additive random components 
(LLMARC) model by separating out the random effect from the nonlinear mean function after integration; see Singh 
and Verret (2006). The LLMARC transformation allows for LMM-type frequentist diagnostics, and built-in 
benchmarks to higher level direct estimates. The HFHB method also uses a new construct termed HFHB-posterior to 
provide benchmark-adjusted posteriors of the final SAEs based on different datasets in the aggregation hierarchy of 
B-level direct estimates for SAE modeling at different levels along with ratio-adjustments for internal consistency. 
 
The organization of this paper is as follows. The formulation of the SAE problem under consideration is described in 
Section 2 in the SAHIE context. Limitations of a pure Bayesian approach and a pure frequentist approach are 
discussed in Sections 3. The frequentist aspects of the proposed HFHB solution are described in Section 4 followed 
by the Bayesian aspects in Section 5. A stepwise description of the HFHB solution is given in Section 6 along with 
its generalization to two time points to allow for temporal correlations between random effects. The final Section 7 
contains summary and concluding remarks.  
 
2. Formulation of the SAE Problem 
 
2.1 Aggregate Level Mixed Log Linear Model: Consider modeling of a nonnegative multivariate outcome vector 
such as counts for the two IC categories by five IPR categories (i.e., the outcome vector with dimension 10) over 
domains defined by county (3142 in all) and ARSH (4 age by 4 race/ethnicity by 2 sex categories); i.e., over 
100,000 domains where ARSH stands for age, race, sex and Hispanic origin. These domains can be termed as 
building-block (B) domains since they correspond to the lowest or smallest level at which covariate information is 
available for at least one covariate. Besides, all domains of interest for SAHIE can be obtained as combinations of 
them. In practice, however, there are likely to be B-domains with no sample or very few observations. In the 
following, we will assume, for simplicity, only one outcome or count variable y. It is also assumed that the mean 
function is linear in the log scale. Now consider a B-level aggregate model for Horvitz-Thompson estimated totals 
{𝑡𝑦𝑏} of the domain population totals {𝑇𝑦𝑏}, 𝑏 = 1, …𝐾𝐵, given by  
 

𝑡𝑦𝑏 = 𝑇𝑦𝑏 + 𝑒𝑦𝑏  = 𝑁𝑏 �𝜇𝑦𝑏 + 𝐸�𝑦𝑏� + 𝑒𝑦𝑏 ≅ 𝑁𝑏𝜇𝑦𝑏 + 𝑒𝑦𝑏  ,                 (1a) 
 
where 𝜇𝑦𝑏 is the superpopulation model mean assumed to be linear in the log scale; i.e.,  
 

  log (𝜇𝑦𝑏) =  𝑨𝑥𝑏′ 𝜷 + 𝜂𝑦𝑏  ,                           (1b) 

and where 𝐸�𝑦𝑏 is the finite population error which is negligible relative to the mean parameter 𝜇𝑦𝑏, 𝑁𝑏 is the known 
population count for domain b, 𝐴𝑥𝑏 is the column vector of aggregate level averages of p-covariates (x) such as 
indicators of main effects of ARSH and IPR categories, and interactions between them as well as continuous 
covariates used in the current SAHIE model, 𝜷 is a p-vector of regression coefficients, the B-level random effects 
𝜂𝑦𝑏’s are independent and identically distributed 𝑁(0,𝜎𝜂2), and are independent of the sampling errors 
(𝑒𝑦𝑏)1≤𝑏≤𝐾𝐵~ 𝑊𝑆(0,  𝑽𝐵) where WS stands for ‘wide sense’ in that only first two moment assumptions are made. In 
the multivariate case, the 𝜷-parameters will be different for different y-variables along with a general covariance 
structure of the vector 𝜼𝒚𝒃 with common variances and covariances over domains b. The matrix 𝑽𝐵 is the theoretical 
(Horvitz-Thompson) design-based variance-covariance (V-C) matrix of the vector (𝑦𝑏) 1≤𝑏≤𝐾𝐵  at the B-level; i.e., it 
is the V-C matrix of observation or sampling errors. Domains of interest are at b or higher levels denoted by d; d 
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=1,…, 𝐾𝐷. Under the above model, we will denote by 𝜃𝑦𝑑 the small area or domain total parameters of interest 
which are very close to the original parameters 𝑇𝑦𝑑 except for the terms involving  𝑁𝑏𝐸�𝑦𝑏 and are defined as 
 

𝜃𝑦𝑑 = ∑ 𝜃𝑦𝑏
𝑚𝑑
𝑏=1 ,  𝜃𝑦𝑏 = 𝑁𝑏𝜇𝑦𝑏        (2) 

 
2.2 Modeling Domain Totals instead of Domain Means: For the above problem, it is preferable to consider 
aggregate level models over unit level models because informative sampling designs can be easily taken into 
account as in Fay and Herriot (1979). In many applications, in fact, unit level modeling may not even be feasible 
because of lack of some covariate information at the unit level for all units in the domain or for confidentiality 
reasons. It may also be preferable to consider modeling of estimated domain totals instead of domain means in order 
to avoid ratio bias in mean specification and to avoid bias in estimating the V-C matrix through Taylor linearization  
because of small or zero sample size at the B-level domains. It may be remarked that for SAE, in general, a model of 
direct estimates of domain means is not equivalent to the corresponding model of direct estimates of domain totals 
(see Rao, 2003, Sections 5.2 and 10.4) because sampling weights used to obtain direct estimates may not have been 
post-stratified to known domain counts.  For example, in model (1), dividing the equation throughout by the domain 
count estimator 𝑁�𝑏 to obtain a model for the estimated domain mean does not cancel out 𝑁𝑏 unless 𝑁�𝑏 = 𝑁𝑏. 
Usually 𝑁�𝑏 is not equal to 𝑁𝑏 because post-stratification or ratio-adjustment to a large number of domain population 
counts at the B-level is likely to impact negatively on the precision of direct estimates; i.e., instead of making direct 
estimates more efficient, they could make them more unstable. The main reason for this undesirable effect is that 
domains of interest may have very small sample size resulting in extreme weight adjustment factors. In fact, for 
domains with zero sample size, such post-stratification is not even feasible.  
 
There is another important reason to prefer to work with estimated domain totals at the B-level instead of means in 
that domains could be grouped together to obtain a G-level model for domain totals with the same parameters but 
with a more stable estimated V-C matrix 𝑽𝐺. The B-level V-C matrix 𝑽𝐵 is conceptually well defined but its 
estimate may be very unstable or unreasonable because a reasonable estimate may not even be feasible due to zero 
sample size. We may not wish to model 𝑽𝐵 in the interest of minimizing assumptions; a clearly desirable philosophy 
in practice driven primarily by frequentist considerations. We remark that the grouping of building-blocks to 
stabilize the V-C matrix should not be governed by smallness of realized sample size in domains but from 
substantive consideration such as similarity of counties with respect to IPR within states. This way, unbiasedness of 
direct estimates at the group level remains valid from the standard theory of domain estimation, and a stable estimate 
of the corresponding design-based V-C matrix 𝑽𝐺 can be computed. The V-C matrix at the G-level can be estimated, 
in general, from standard design-based considerations for ACS—either under the with-replacement primary 
sampling unit (PSU) assumption within each stratum or using a replication method such as the successive difference 
replication used for ACS. Alternatively, approximations using high entropy considerations (Deville, 1999; Berger 
and Tillé, 2009) can also be used.  
 
2.3 Grouping to Avoid Smoothing of the V-C Matrix and for Normality of the Observation Error: Typically in 
SAE the observation error V-C matrix 𝑽𝐵 is smoothed using generalized variance functions and then treated as 
known. In the present approach after grouping, this may not be required for the observation error V-C matrix 𝑽𝐺. To 
see this, note that for the domain g estimator 𝑡𝑦𝑔, the Sen-Yates-Grundy form of the design-based variance estimator 
𝑣𝑎𝑟𝜋�𝑡𝑦𝑔� for a random sample s of fixed size n is given by 
 

                                                   𝑣𝑎𝑟𝜋�𝑡𝑦𝑔� = (−1
2
) ∑ ∑ 𝜋𝑖𝑗−𝜋𝑖𝜋𝑗

𝜋𝑖𝑗
�
𝑦𝑖𝛿𝑖(𝑔)

𝜋𝑖
−

𝑦𝑗𝛿𝑗(𝑔)

𝜋𝑗
�
2

𝑗 ∈𝑠𝑖 ∈𝑠  ,  (3) 

 
where 𝜋𝑖, 𝜋𝑖𝑗  are respectively first and second order sample inclusion probabilities, and 𝛿𝑖(𝑔) is an indicator function 
for unit i  if it belongs to domain g. It follows that while at the b-level, events of pairs of observations with one 
element not in the domain b are likely to be prevalent, they are not likely to occur at higher G-level domains 
obtained after suitable grouping. Thus, we expect 𝑣𝑎𝑟𝜋�𝑡𝑦𝑔� to be more stable (i.e., in the sense of small coefficient 
of variation due to large number of sample observations and hence 𝑡𝑦𝑔 being more precise) as we move to higher 
levels by grouping more and more domains. Grouping also has a side benefit in that the normality assumption for 
the observation error at the G-level becomes more tenable. As a special case of (3) for simple random sampling 
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without replacement for a sample of size n from a population of size N,  𝜋𝑖 = 𝑛/𝑁, and 𝜋𝑖𝑗 = 𝑛(𝑛 − 1)/𝑁(𝑁 − 1), 
we have 
 

𝑣𝑎𝑟𝑆𝑅𝑆�𝑁 ∑ 𝑦𝑖𝛿𝑖(𝑔)
𝑛
𝑖=1 𝑛⁄ � = 1

2
�𝑁
𝑛
�
2 𝑁−𝑛
𝑁(𝑛−1)

∑ ∑ (𝑦𝑖𝛿𝑖(𝑔) − 𝑦𝑗𝛿𝑗(𝑔))2𝑛
𝑗=1

𝑛
𝑖=1   

                                                                           = 𝑁2 𝑁−𝑛
𝑁

1
𝑛(𝑛−1)

∑ (𝑦𝑖𝛿𝑖(𝑔) − 𝑦𝛿����)2𝑛
𝑖=1                          (4) 

where 𝑦𝛿���� = ∑ 𝑦𝑖𝛿𝑖(𝑔)
𝑛
𝑖=1 𝑛⁄  .  

 
Under G-level modeling, SAEs for counties involved in grouping (i.e., B-level SAEs within a given G-level) can 
still be obtained because estimates for all random effects at the B-level are obtained under the G-level model. 
Specifically, after grouping, the group or G-level observation equation is derived from the B-level by a simple 
aggregation of the dependent variable 𝑡𝑦𝑏 as given below where 𝑚𝑔 denotes the group size:   
             
    ∑ 𝑡𝑦𝑏

𝑚𝑔
𝑏=1 = ∑ 𝑁𝑏exp (𝑨𝑥𝑏′ 𝜷 + 𝜂𝒃)𝑚𝑔

𝑏=1 + ∑ 𝑒𝑏
𝑚𝑔
𝑏=1 .                             (5) 

 
In the case of SAHIE application, there are more than 100,000 building-blocks and so even after grouping, there 
should be sufficient degrees of freedom for fitting model parameters. In practice, this is expected to be the case in 
general.  
 
2.4 Building Block Modeling for the Feasibility of the Exchangeability Assumption: Modeling at a very low 
level (i.e., the building block or B-level) may be preferred for the following reasons. Currently, different HB models 
are used for county and state levels despite each state being an aggregation of counties. Not only does it cause 
internal inconsistency because county SAEs may not add up to the corresponding state SAEs, but having a single 
fundamental B-level model to derive all higher level models is conceptually attractive and theoretically defensible. 
For instance, if there is exchangeability of random effects at the B-level, then there cannot be exchangeability of 
random effects 𝜂𝑔 at the G-level because ∑ 𝑁𝑏𝜂𝑏

𝑚𝑔
𝑏=1  equated to  𝑁𝑔𝜂𝑔 implies variance of 𝜂𝑔 must be 

𝜎𝜂2 ∑ 𝑁𝑏2/𝑚𝑔
𝑏=1 𝑁𝑔2; see Singh and Yuan (2010), and Malec and Muller (2008) for related comments. As a way out, one 

can treat county by ARSH domains as building-blocks and have one model for both county and state level estimates.  
 
For the B-level model, ideally building-blocks should be similar in population counts (introducing 𝑁𝑏 as a 
multiplicative factor in modeling of 𝜃𝑦𝑏 helps toward the assumption of exchangeability of 𝜂𝒃 by accounting for 
differential building block sizes) and as close to the unit level as possible for which covariate information is 
available. Observe that for LMM, the factor 𝑁𝑏 arises naturally if we derive an aggregate B-level model from a unit 
level model for the mean (𝜃𝑦𝑏 𝑁𝑏⁄ ) where all the covariates are at B (or higher) levels; i.e., have common values for 
all units within the aggregation level. Note that if a covariate is at B- or a higher aggregate level, then the 
corresponding common value at the unit level is obtained by dividing the covariate value by the number of units in 
the aggregate.  
 
3. Limitations of Pure Bayesian and Pure Frequentist Approaches 

Neither a pure Bayesian nor a pure frequentist approach is adequate for the SAE problem for the following reasons. 
 
3.1 Pure Bayesian: Limitations 
 
The model (1a, b) at the G-level can be embedded in an HB framework (see Section 5) with a uniform prior on  𝜷 
and a vague hyper-prior on 𝜎𝜂2 to obtain the posterior distribution using Markov Chain Monte Carlo (MCMC) 
denoted by 

 
�𝜷(𝐺),  𝜎𝜂

2(𝐺), (𝜂𝑏
(𝐺))�𝒕𝑦

(𝐺)�               (6) 
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where the superscript G denotes the G-level data 𝒕𝑦
(𝐺) used for estimating parameters under HB. From (6), point, 

variance, and interval estimates of desired D-level domain parameters 𝜃𝑦𝑑 can be obtained. However there are 
several issues. 
 
(a) BLUP-Type Interpretation and LMM-Type Frequentist Diagnostics; For LMM, the frequentist solution of 
best linear unbiased prediction (BLUP) of small area parameters has a closed form expression and simple shrinkage-
type interpretation which can be easily understood by users. The shrinkage interpretation is convincing to users in 
that if the direct estimator is relatively more reliable, then the corresponding SAE exhibits less shrinkage to the 
synthetic estimator (defined as the mean function when the random effect is zero). With HB solution, however, there 
is no analytically closed form which makes it difficult to interpret it as a shrinkage estimator although in principle 
any Bayesian solution has less synthetic or prior influence as the direct estimator gets more precise (Kass and 
Steffey, 1989). Besides having a BLUP-type interpretation, it is important to be able to perform frequentist LMM-
type model diagnostics to verify assumptions directly for building user confidence.  
 
(b) Built-in Benchmarking to Reliable Higher Level Direct Estimators: With LMM or with generalized LMM 
(GLMM) with random effects outside the nonlinear mean function, it is possible to have built-in benchmarking of 
SAEs (or just synthetic estimates) to higher level direct estimators or known population totals by enlarging the 
model with addition of certain auxiliary variables; see Singh (2006), Singh and Verret (2006) and Wang, Fuller, and 
Qu (2008). In SAHIE, random benchmark constraints on parameter estimates are national level direct estimates of 
insured and uninsured obtained from ACS, and nonrandom benchmarks such as the total population counts. Such 
benchmarking is desirable in the interest of robustification against possible model misspecification and to reduce the 
wellknown overshrinkage problem in SAE possibly due to the exchangeability assumption; see e.g., the triple goal 
estimator of Louis (1984) and the constrained Bayes estimator of Ghosh (1992). However, random benchmarks 
cannot inherently be incorporated within a Bayesian framework because the benchmark is based on the same data 
that are used as input to the likelihood. This also implies that under HB it is not theoretically defensible to 
benchmark each MCMC realization and treat the resulting distribution as the desired benchmark-adjusted posterior 
distribution. For ensuring that HB satisfies benchmark constraints, a frequentist-type ratio adjustment is typically 
made in practice via a second step outside the HB framework or use of a penalized loss function as in Datta, Ghosh, 
Steorts, and Maples (2010). However, the penalized loss function framework may not be quite satisfactory because 
resulting SAEs are not subject to natural constraints on parameter estimation such as non-negativity.  Also, it does 
not provide benchmark-adjusted posterior distributions of parameters of interest. Thus, the inferential properties of 
the resulting estimators do not fall under either frequentist or Bayesian realms.   
 
 (c) Synthetic Influence on HB-SAEs at Higher Levels: The optimal HB-SAEs of 𝜃𝑦𝑑’s under the squared error 
loss function using the G-level data are expected to exhibit more shrinkage toward the synthetic estimators than the 
direct estimators of domain totals because of more relative instability (which also implies less precision) of the g-
level direct estimator 𝑡𝑦𝑔 than the higher d-level  direct estimators 𝑡𝑦𝑑. As the direct estimator gets more precise at 
higher levels, HB is expected to exhibit less shrinkage if the model at the higher level is based on summary statistics 
or aggregated direct estimates derived from the B-level model. However under HB estimation using the G-level data 
in estimating higher level small area parameters, synthetic influence persists because 𝜃𝑦𝑑 is estimated as a sum 
∑ 𝜃𝑦𝑔
𝑚𝑑
𝑔=1 .  This suggests that it might be better to go for a nonoptimal estimator which uses different input datasets 

or summary statistics for the likelihood used in HB at different domain levels in a hierarchy of aggregates of basic 
𝑡𝑦𝑏 estimates; see also Blum (2010) for use of summary statistics for approximate Bayes. However, parameters for 
different likelihoods are all the same as those at the B-level. This is somewhat similar to the current practice of 
different input datasets for state and county models except that parameters are not the same unlike the proposed 
hierarchically aggregated models.  
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(d) Internal Consistency of SAEs from Different Levels: With the current practice of different models used for 
different domain levels, there is the problem of internal inconsistency and hence of face validity in that HB-SAEs at 
lower levels may not sum to SAEs at higher levels. To remedy this, hierarchical benchmarking through frequentist-
type ratio adjustments is typically used in a separate step. The end result is neither Bayesian nor frequentist. How to 
find variance and interval estimates that are adjusted for hierarchical benchmarking needs to be addressed. 
 
3.2 Pure Frequentist: Limitations 
 
The GLMM of (1) with the log link function can be easily transformed into a log linear mixed with additive random 
components (LLMARC) by integrating out the random effect in the mean function using log normal results; see 
Section 4. Consequently, the conditional mean given the random effect is sum of the marginal mean (nonlinear in 
fixed parameters only) and a transformed random effect with a log normal distribution. It is then possible to apply 
frequentist quasi-likelihood (QL of which BLUP is a special case for LMM) to obtain SAEs. However, there are 
several issues. 
 
(a) Intractability of Marginal Likelihood: For estimating fixed parameters (𝜷, 𝜎𝜂2) of the LLMARC model, the 
marginal likelihood is not tractable due to very high dimensional integration required for a large number (𝐾𝐵) of 
random effects. Therefore, standard methods such as ML (for both 𝜷, 𝜎𝜂2) or REML (for 𝜎𝜂2) are not applicable. 
However, other semi-parametric frequentist methods such as quasi-likelihood under first two moment specifications 
or REML after linearizing the mean function under LLMARC with a working assumption of normality of error 
terms can be used to obtain consistent estimates as in Singh and Verret (2006). 
 
(b) Inadmissibility of Second Order Parameter Estimates: The semi-parametric frequentist methods mentioned 
above are known to have problems in general for providing admissible estimates of second order parameters 
(variances and correlations). It is a serious drawback of such methods, and several remedies are proposed in the 
literature; see e.g., Wang and Fuller (2003), Li and Lahiri (2010) among others. However, these are not fully 
satisfactory for our purpose due to nonnormal random effects under LLMARC modeling. In such problems, HB 
methods are known to produce reasonable estimates (Bell, 1999). 
 
(c) MSE of SAEs Adjusted for Estimated Second Order Parameters and Benchmarking: Even in the absence 
of benchmarking, it seems difficult to use available frequentist methods to avoid underestimation of mean square 
error (MSE) of SAEs in order to account for estimated second order parameters. The main reason is that random 
effects under LLMARC are not normal. The problem gets further compounded for adjusting MSE for hierarchical 
benchmarking to higher level direct or indirect (i.e., SAE) estimates.  
 
(d) Interval Estimation of Small Area Parameters: Usual frequentist methods assume approximate normality to 
construct interval estimates from point estimates and MSE estimates. However, for LLMARC with non-normal 
random effects, the assumption of approximate normality of SAEs is not tenable.  
 
4. Frequentist Aspects of the Proposed HFHB Solution 
 
Here we assume that estimates of the fixed parameters (𝜷, 𝜎𝜂2) are already computed using HB at the G-level (see 
Section 5 on the Bayesian aspects of HFHB), and consider quasi-likelihood (QL) estimation of random effects and 
small area parameters under LLMARC. The LLMARC model can be derived from the GLMM of (1) because with 
the log link function, an analytically closed form of the marginal mean is obtained by integrating out 𝜂𝒃’s.  
Specifically, using properties of log-normal distribution, the model (1b) can be recast in terms of the marginal mean 
as follows. 
 

 𝜃𝑦𝑏 = 𝑁𝑏(𝑒𝑨𝑥𝑏
′ 𝜷+𝜎𝜂2 2⁄ + 𝑒𝑨𝑥𝑏

′ 𝜷𝜆𝑦𝑏),    log( 𝜆𝑦𝑏+𝑒𝜎𝜂2 2⁄ ) ≡ 𝜂𝑦𝑏 ~𝑖𝑛𝑑𝑁(0, 𝜎𝜂2)               (7) 
 
where the additive random effect 𝜆𝑦𝑏 (= 𝑒𝜂𝑦𝑏 − 𝑒𝜎𝜂2 2⁄ ) has mean 0 and variance 𝑒𝜎𝜂2(𝑒𝜎𝜂2 − 1). Observe that while 
the random effect is transformed under LLMARC, the regression parameters 𝜷 do not change except for the 
intercept. Also note that LLMARC is applicable in general because the y-variable is typically nonnegative or can be 
made so after translation. Also in the case of multivariate models with count data,  the log link function may not be 
very restrictive if there are no parameter constraints such as G-level constraints of total counts (𝑁𝑔) on components 
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of the multivariate vector (𝜽�𝑦𝑔) of count estimates. The above model provides a direct connection between a 
frequentist QL solution and an HB solution where the frequentist model does not require hyper-prior specification 
but matches the V-C specifications for the observation error and random effects under HB.  
 
4.1 QL Estimation of Small Area Parameters:  Consider the G-level version of LLMARC obtained after grouping 
the B-level direct estimates. Denoting ∑ 𝑡𝑦𝑏

𝑚𝑔
𝑏=1  by the gth group total 𝑡𝑦𝑔, the corresponding mean ∑ 𝜃𝑦𝑏

𝑚𝑔
𝑏=1  by 𝜃𝑦𝑔 

and the corresponding sampling error ∑ 𝑒𝑦𝑏
𝑚𝑔
𝑏=1  by 𝑒𝑦𝑔, we have the LLMARC at the G-level as 

 
 𝑡𝑦𝑔 = 𝜃𝑦𝑔 + 𝑒𝑦𝑔,  (𝑒𝑦𝑔) 1≤𝑔≤𝐾𝐺~ 𝑁(0,𝑽𝐺)    (8a) 
                                                                         

𝜃𝑦𝑔 = ∑ 𝑁𝑏𝜈𝑦𝑏
𝑚𝑔
𝑏=1 + 𝑒−𝜎𝜂2 2⁄ ∑ 𝑁𝑏𝜈𝑦𝑏𝜆𝑦𝑏

𝑚𝑔
𝑏=1 ,    log( 𝜆𝑦𝑏+𝑒𝜎𝜂2 2⁄ ) ≡ 𝜂𝑦𝑏 ~𝑖𝑛𝑑𝑁(0, 𝜎𝜂2)   (8b) 

 
where 𝜈𝑦𝑏=𝑒𝑨𝑥𝑏

′ 𝜷+𝜎𝜂2 2⁄ . Given 𝜷 and 𝜎𝜂2, a frequentist (QL) estimator of 𝜃𝑦𝑔 using optimal estimating functions or 
quasi-likelihood is obtained as 
 

      𝜃�𝑦𝑔,𝑄𝐿= ∑ 𝑁𝑏𝜈𝑦𝑏
𝑚𝑔
𝑏=1  +𝑔𝑡ℎ 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑼G𝑾𝐺

−1�𝑡𝑦𝑔 − ∑ 𝑁𝑏𝜈𝑦𝑏
𝑚𝑔
𝑏=1 �

1≤𝑔≤𝐾𝐺
,    (9a)        

 
where the total V-C matrix 𝑾G is 𝑽G+𝑼G, 𝑼G= 𝑑𝑖𝑎𝑔{(𝑒𝜎𝜂2 − 1)�∑ 𝑁𝑏𝜈𝑦𝑏

𝑚𝑔
𝑏=1 �

2
}1≤𝑔≤𝐾𝐺.  This is useful for 

computing residuals 𝑡𝑦𝑔 − 𝜃�𝑦𝑔,𝑄𝐿  for frequentist model diagnostics.  In vector form, the QL-estimator of 
𝜽𝑦

(𝐺)(=(𝜃𝑦𝑔)1≤𝑔≤𝐾𝐺) is given by 
 

𝜽�𝑦,𝑄𝐿
(𝐺) =  𝜽�𝑦,𝑆𝑌𝑁

(𝐺) +  𝑼G𝑾𝐺
−1 (𝒕𝑦

(𝐺) − 𝜽�𝑦,𝑆𝑌𝑁
(𝐺) ),    𝜽�𝑦,𝑆𝑌𝑁

(𝐺) = �∑ 𝑁𝑏𝜈𝑦𝑏
𝑚𝑔
𝑏=1 �

1≤𝑔≤𝐾𝐺
  (9b) 

 
The above estimator 𝜽�𝑦,𝑄𝐿

(𝐺)  is a shrinkage estimator in that it gets closer to the direct estimator 𝒕𝑦
(𝐺) than the synthetic 

estimator 𝜽�𝑦,𝑆𝑌𝑁
(𝐺)  as the direct estimator gets relatively more precise; i.e., when the number of observations in each 

G-level domain is large such that the shrinkage matrix gets close to the identity matrix. In other words, eigenvalues 
of 𝑼G𝑾𝐺

−1 which are always between 0 and 1 get close to 1 or alternatively, eigenvalues of the signal to noise ratio 
matrix 𝑼G𝑽𝐺−1become large. It follows that under the aggregation hierarchy of direct estimators used as input 
datasets at different levels, QL-SAEs at higher levels are likely to be closer to direct estimates as compared to the 
estimates obtained by aggregating SAEs from the G-level; see Subsection 2.3 about the precision of the V-C matrix 
after grouping. In particular, QL-SAEs at the state level based on the revised model after aggregating to the state 
level are likely to exhibit less shrinkage to the state level synthetic estimates. The reason for this is that the V-C 
matrix at the state level is likely to be relatively more precise than the V-C matrix at the lower G-level which is 
based on unbalanced data with clustering at 0 because many data points in the state sample may not belong to any 
given domain at the G-level. However, an interesting observation was made by Bell (2013) that this may not be the 
case if G-level domains are themselves strata although such a scenario may not be practical because the G-level 
represents a fairly low level of aggregation. It is also of interest to note that with the G-level or higher level 
modeling, QL-estimates of all the elements of the random effect vector (𝜂𝑦𝑏)1≤𝑏≤𝐾𝐵as defined in the original B-
level model are obtained even though some of the B-level domains may not have any sample data. 
 
4.2 Frequentist-Type Model Diagnostics: Besides usual Bayesian diagnostics of posterior predictive checks and 
cross-validation for the HB model (Section 5) corresponding to the LLMARC model, usual frequentist diagnostics 
can also be conducted by standardizing the residuals 𝑡𝑦𝑔 − 𝜃�𝑦𝑔,𝑄𝐿  where HB estimates of second order parameters 
(variance components) are plugged in. It is also useful to consider Cholesky residuals (Hausman, Ryan, and Coull, 
2004) so that the residuals become approximately uncorrelated because use of common estimated regression 
parameters induces correlations in the residuals. Note that unlike unit-level residuals where such correlations could 
be ignored, it is not reasonable to do the same with aggregate or domain level residuals because domain sample sizes 
relative to the total sample size do not tend to zero. In addition to testing normality of standardized residuals, 
estimated random effects 𝜂𝑦𝑏 under LLMARC can be standardized to check for normality.   
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Moreover, it is important to perform both internal and external validation of the LLMARC model. As part of 
internal validation, besides residual diagnostics, estimates under alternate models with simplified assumptions 
should be examined for comparison with the chosen model. Although the scope of external validation in general is 
limited due to lack of alternative independent estimates, out-of-sample residuals in predicting observed domain 
estimates not used in modeling can serve as a surrogate for external validation. This is in the same spirit as cross-
validation residuals but computationally less intensive because domains can be ordered like a pseudo-time series in 
the decreasing order of observed sample size, and then state space modeling can be used for one-step and two step 
ahead prediction residuals; see Singh (2006) for the case of LMM. Finally, it would be of considerable interest to 
plot  𝜃�𝑦𝑔,𝐻𝐵 against 𝜃�𝑦𝑔,𝑄𝐿 , and �̂�𝑦𝑏,𝐻𝐵 against �̂�𝑦𝑏,𝑄𝐿 , and check their clustering around the 45 degree line. 
 
4.3 Built-in Benchmark Constraints to Higher Level Direct Estimates: Under GLMM, it is possible to have 
built-in benchmarks (random or nonrandom) whenever the marginal mean after integrating out the random effects 
has an analytically closed form; Singh and Verret (2006) for GLMM, and Singh (2006), and Wang, Fuller and Qu 
(2008) for LMM. In the case of LMM, extra covariates are introduced such that the additional estimating functions 
for the new fixed regression parameters are identical to benchmark constraints. The modified estimating functions 
for regression parameters are given by 

𝑿+
(𝐺)′𝑾𝐺

−1�𝒕𝑦
(𝐺) − 𝑿+

(𝐺)𝜷�+
(𝐺)� = 𝟎      (10) 

 
where the subscript ‘+’ in the covariate matrix 𝑿+

(𝐺) denotes that it is extended and the superscript ‘G’ denotes the 
data for model fitting is at the G-level. In the case of nonlinear models for the marginal mean as in LLMARC, the 
mean is first linearized by Taylor and then the linear estimating equation (10) is solved iteratively to satisfy 
benchmarks exactly. Specifically, if it is desired to benchmark SAEs to higher level direct estimates, then the extra 
covariates take the form 𝑽𝐺𝜹𝑐 where 𝜹𝑐 is a vector of 0s and 1s indicating presence or absence of a domain from the 
G-level in the benchmark. On the other hand, if it is desired to benchmark synthetic estimates which may be 
preferable to protect against misspecified models, then the extra covariates take the form 𝑾𝐺𝜹𝑐. In the latter case, 
the new covariates involve unknown second order parameters (𝜎𝜂2) and so these covariates are redefined iteratively. 
Under the HB modeling of the next section, these iterations become automatically part of MCMC replicates. In fact, 
even when benchmarking SAEs and not just the synthetic estimates under LLMARC, the Taylor linearized mean 
function also involve 𝜎𝜂2 (Singh and Verret, 2006). For the HFHB method, we propose using benchmarking of 
synthetic estimates only because the hierarchical benchmarking step ensures that the SAEs sum to higher level direct 
estimates anyway. Note that the extra covariates created for benchmarking involve the V-C matrix  𝑽𝐺. However, if 
SAEs at the B-level are also of interest, the V-C matrix  𝑽𝐵 is needed which may not be available. For this purpose, 
the available matrix 𝑽𝐺 at the higher G-level can be expanded to obtain 𝑽𝐵 in an internally consistent manner by 
assigning to each element in the matrix 𝑽𝐵 in a given group the corresponding value in the matrix 𝑽𝐺 divided by the 
number of domains in the group as in Singh and Verret (2006). 
 
4.4 Hierarchical Benchmarking for Internal Consistency: Under a hierarchical aggregation of domains, higher 
level domain direct estimators are used as input to the model in order to reduce the shrinkage to the synthetic 
component of SAE.  As a result, SAEs at different levels of the hierarchy may not be internally consistent. To 
overcome this problem of lack of internal consistency and consequently lack of face validity, the SAEs from 
different levels can be ratio-adjusted (or raked if there is more than one dimension) to higher level SAEs in a top-
down manner. Such type of ratio-adjustment is commonly made in survey sampling for post-stratification. 
Specifically, for QL-SAEs, we adjust the D-level SAEs 𝜃�𝑦𝑑,𝑄𝐿 , d = 1, …, 𝑚ℎ to sum to the immediately preceding 
higher level SAE 𝜃�𝑦ℎ,𝑄𝐿for domain h containing 𝑚ℎ lower D-level domains to obtain the ratio-adjusted SAEs 
𝜃�𝑦𝑑,𝑄𝐿 . That is, we obtain 

𝜃�𝑦𝑑,𝑄𝐿 = 𝜃�𝑦𝑑,𝑄𝐿  �𝜃�𝑦ℎ,𝑄𝐿 ∑ 𝜃�𝑦𝑑,𝑄𝐿
𝑚ℎ
𝑑=1� � .     (11) 
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5. Bayesian Aspects of the Proposed HFHB Solution 
 
Suppose extra covariates are included in the model (1) at the G-level so that benchmark constraints are exactly 
satisfied by QL-SAEs and that the model is already validated using frequentist diagnostics. Now consider an HB 
version of the model as given below.  
 
Level 1:  𝑡𝑦𝑔 = 𝜃𝑦𝑔 + 𝑒𝑦𝑔,  (𝑒𝑦𝑔) 1≤𝑔≤𝐾𝐺~ 𝑁(0,𝑽𝐺)) ,   

Level 2:  𝜃𝑦𝑔 = ∑ 𝑁𝑏exp (𝑨𝑥𝑏′ 𝜷 + 𝜂𝑦𝑏)𝑚𝑔
𝑏=1 ,    𝜂𝒚𝒃~𝑖𝑖𝑑𝑁(0,𝜎𝜂2) ,                                                              (12) 

Level 3: Vague hyper-prior for inverse 𝜎𝜂2 such as Gamma (a, b) with very small a, b > 0, and improper (uniform) 
prior for 𝜷.  
 
5.1 Admissible Estimation of 𝜎𝜂2 and Approximate Benchmarking of HB-Synthetic Estimates: Using MCMC 

replicates (𝜷(𝐺,𝑘),  𝜎𝜂
2(𝐺,𝑘)), k= 1,…, M,  from the posterior distribution �𝜷(𝐺),  𝜎𝜂

2(𝐺)�𝒕𝑦
(𝐺)� under the HB model (12), 

we obtain posterior means as point estimates  𝜷�𝐻𝐵
(𝐺) and 𝜎�𝜂,𝐻𝐵

2(𝐺). The estimator 𝜎�𝜂,𝐻𝐵
2(𝐺) is admissible (i.e., positive) by 

construction and hence appealing; see also Bell (1999).  Moreover, since ML and HB estimates of regression 
parameters are asymptotically equivalent (Kass and Steffey, 1989), and since the QL estimate is consistent and close 
to ML if  𝜎𝜂2 is small or if the marginal errors 𝑡𝑦𝑔 − ∑ 𝑁𝑏𝜈𝑦𝑏

𝑚𝑔
𝑏=1  are approximately normal, we expect 𝜷�𝐻𝐵

(𝐺) to be 

fairly close to 𝜷�𝑄𝐿
(𝐺). Therefore, it follows from subsection 4.3, the HB-SYNs are expected to satisfy approximately 

the benchmark constraints of reliable higher level direct estimates.   
 
5.2 The HFHB-Posterior Construct to Account for Different Hierarchical Aggregation of Direct Estimates as 
Data Input at Different Levels: As noted in subsection 4.1, given fixed parameters (𝜷,𝜎𝜂2), the QL estimator 
shows less shrinkage to synthetic and becomes closer to direct as direct estimates get more precise. This is expected 
to happen if hierarchical aggregation of direct estimates is used at higher levels as input to the model. Under 
Bayesian, since the posterior is proportional to the product of the likelihood and the prior and if the maximum 
likelihood estimate of the parameter of interest is relatively more precise than provided by the prior, then the HB 
estimate gets closer to the maximum likelihood estimator; see e.g., Kass and Steffey (1989). This implies that given 
𝜷,𝜎𝜂2, the HB estimator is likely to exhibit less model dependence if direct estimates for the small area model at any 
given level are based on the corresponding hierarchical aggregates.   
 
To incorporate the feature of approximate built-in benchmarking of HB-SYNs to high level direct estimates and the 
desire to make HB-SAEs closer to direct estimates at higher levels of aggregation, a new construct termed HFHB-
posterior is needed as explained below.  First we compute the marginal posterior �𝜷,  𝜎𝜂2�𝒕𝑦

(𝐺)� of the fixed first and 
second order parameters from the G-level data (lowest possible for modeling) in view of the desired approximate 
built-in benchmarking feature of the HFHB solution. Next starting with the highest level (denote by H) which  could 
be the Census Division or Subdivision, we compute the conditional posterior �(𝜂𝑦𝑏)�𝜷,  𝜎𝜂2, 𝒕𝑦

(𝐻)� using the 
corresponding hierarchical aggregates of direct estimates in order to make HB-SAEs closer to the direct estimates. 
Now due to the discrepancy between conditioning datasets 𝒕𝑦

(𝐺) and 𝒕𝑦
(𝐻) in the marginal and conditional posteriors 

needed for the joint posterior of (𝜷,𝜎𝜂2, (𝜂𝑦𝑏) 1≤𝑏≤𝐾𝐵), we need to introduce a new construct of HFHB-posterior as 
defined below.  
 
Joint HFHB-posterior of (𝜷,𝜎𝜂2, (𝜂𝑦𝑏) 1≤𝑏≤𝐾𝐵) at H-level = �𝜷(𝐺),  𝜎𝜂

2(𝐺)�𝒕𝑦
(𝐺)� × �(𝜂𝑦𝑏

(𝐻))�𝜷(𝐺),  𝜎𝜂
2(𝐺), 𝒕𝑦

(𝐻)�,       (13)  
 
where the super-scripts G in 𝜷(𝐺),  𝜎𝜂

2(𝐺) and H in (𝜂𝑦𝑏
(𝐻)) (short for (𝜂𝑦𝑏

(𝐻)) 1≤𝑏≤𝐾𝐵)) denote the level of hierarchical 
aggregation of the dataset used for estimating the model parameters. The two components (marginal and 
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conditional) of the joint HFHB-posterior are of course traditional but the product is not. Nevertheless, the joint is 
still a legitimate probability distribution. The above HFHB-posterior can be obtained empirically by computing two 
linked sets of MCMC replicates—one marginal MCMC and the other conditional MCMC as follows. The marginal 
MCMC replicates are obtained from the empirical joint posterior �𝜷(𝐺),  𝜎𝜂

2(𝐺), (𝜂𝑦𝑏
(𝐺))�𝒕𝑦

(𝐺)� using full conditionals 

�𝜷(𝐺)�𝜎𝜂
2(𝐺), (𝜂𝑦𝑏

(𝐺)), 𝒕𝑦
(𝐺)� which is Normal, �𝜎𝜂

2(𝐺)�𝜷(𝐺), (𝜂𝑦𝑏
(𝐺)), 𝒕𝑦

(𝐺)� which is inverse Gamma, and 

�(𝜂𝑦𝑏
(𝐺))�𝜷(𝐺),  𝜎𝜂

2(𝐺), 𝒕𝑦
(𝐺)� which requires the Metropolis-Hastings (M-H) algorithm; see Rao (2003, pp. 271). The 

posterior �(𝜂𝑦𝑏
(𝐺))�𝜷(𝐺),  𝜎𝜂

2(𝐺), 𝒕𝑦
(𝐺)� is proportional to the product of the normal prior of (𝜂𝑦𝑏

(𝐺)) given 𝜎𝜂
2(𝐺) and the 

normal likelihood [𝒕𝑦
(𝐺)| 𝜷(𝐺),  𝜎𝜂

2(𝐺), (𝜂𝑦𝑏
(𝐺))] as defined by equation (12). For cycle k (each cycle consists of a full 

set of realizations of components of  (𝜷,𝜎𝜂2, (𝜂𝑦𝑏) 1≤𝑏≤𝐾𝐵)), and given a replicate (𝜷(𝐺,𝑘),  𝜎𝜂
2(𝐺,𝑘)) from 

�𝜷(𝐺),  𝜎𝜂
2(𝐺)�𝒕𝑦

(𝐺)�, the conditional MCMC is run to obtain a replicate (𝜂𝑦𝑏
(𝐻,𝑘)) from �(𝜂𝑦𝑏

(𝐻))�𝜷(𝐺,𝑘),  𝜎𝜂
2(𝐺,𝑘), 𝒕𝑦

(𝐻)� 
using the M-H algorithm.  
 
The above marginal-conditional MCMC is different from the usual MCMC in that for each cycle k, given    
(𝜷(𝐺,𝑘),  𝜎𝜂

2(𝐺,𝑘)), a new conditional MCMC with a separate burn-in period is required to even obtain a single 

replicate (𝜂𝑦𝑏
(𝐻,𝑘)) for the same cycle. This ensures that the MCMC replicates for �(𝜂𝑦𝑏

(𝐻))�𝜷(𝐺,𝑘),  𝜎𝜂
2(𝐺,𝑘), 𝒕𝑦

(𝐻)� are 

from a stationary chain because the conditioning dataset changes from 𝒕𝑦
(𝐺) to 𝒕𝑦

(𝐻).  From the linked replicates    

(𝜷(𝐺,𝑘),  𝜎𝜂
2(𝐺,𝑘)) and (𝜂𝑦𝑏

(𝐻,𝑘)) for each cycle k = 1,…, M, the HFHB-posterior means provide the proposed HFHB-

SAEs 𝜃�𝑦ℎ,𝐻𝐹𝐻𝐵 ;h= 1,…, 𝐾𝐻 at the H-level.  However, before we designate (𝜂𝑦𝑏
(𝐻,𝑘)) as the replicate estimate from 

cycle k, a number of replicate values of (𝜂𝑦𝑏
(𝐻,𝑘)) for the same cycle k at level H are generated so that separate burn-in 

periods can be completed for each level starting with the next lower level D, and further lower levels until the lowest 
level G is reached. These extra replicates serve as candidates for the conditional MCMC at lower levels down the 
aggregation hierarchy.   
 
Finally, once the burn-in periods are completed for all hierarchical aggregation levels for cycle k, the subsequent 
replicates, one from each level of the hierarchy, together form the desired multivariate replicate vector 
�(𝜂𝑦𝑏

(𝐻,𝑘))′, (𝜂𝑦𝑏
(𝐷,𝑘))′, … , (𝜂𝑦𝑏

(𝐺,𝑘))′�′ for cycle k, all for the same set of 𝜼 −parameters but based on different 
conditioning datasets from different levels. These separate replicate estimates of 𝜼 −parameters can be viewed as 
updated estimates as more and more detailed lower level datasets are used. Note that the 𝐾𝐵 −components of the 
replicate (𝜂𝑦𝑏

(𝐻,𝑘)) from level H serve in order as M-H candidates for the 𝐾𝐵 −components of the replicate (𝜂𝑦𝑏
(𝐷,𝑘)) 

which in turn serve as M-H candidates for the 𝐾𝐵 −components of the next lower level replicate until we reach 
(𝜂𝑦𝑏

(𝐺,𝑘)). 
 
5.3 Hierarchical Benchmarking of Lower Level SAEs to Higher Level SAEs: Given HFHB-SAEs for cycle k are 
obtained at the highest H-level in the hierarchy, HFHB-SAEs for the lower levels are computed in a top-down 
manner after ratio-adjustments such that they sum to the previously obtained SAEs at the higher level. To obtain the 
corresponding benchmark-adjusted posteriors, the HFHB methodology can be used as follows. Specifically,  
suppose the next intermediate level below H is D and we wish to draw a replicate consisting of 𝐾𝐵 components from 
�(𝜂𝑦𝑏

(𝐷))�𝜷(𝐺,𝑘),  𝜎𝜂
2(𝐺,𝑘), 𝒕𝑦

(𝐷)� corresponding to the marginal-conditional MCMC cycle k already performed at the 

previous H-level. If we obtain this replicate directly from �(𝜂𝑦𝑏
(𝐷))�𝜷(𝐺,𝑘),  𝜎𝜂

2(𝐺,𝑘), 𝒕𝑦
(𝐷)� analogous to (𝜂𝑦𝑏

(𝐻,𝑘)) from 

�(𝜂𝑦𝑏
(𝐻))�𝜷(𝐺,𝑘),  𝜎𝜂

2(𝐺,𝑘), 𝒕𝑦
(𝐻)�, then the replicate (𝜂𝑦𝑏

(𝐷,𝑘)) so obtained will not be linked to the replicate (𝜂𝑦𝑏
(𝐻,𝑘)) from 

the previous higher level although such a correspondence is, however, needed for hierarchical benchmarking.  
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We therefore propose to update (𝜂𝑦𝑏
(𝐻,𝑘)) by using more detailed domain-level information in 𝒕𝑦

(𝐷) than 𝒕𝑦
(𝐻). To this 

end, �(𝜂𝑦𝑏
(𝐻))�𝜷(𝐺,𝑘),  𝜎𝜂

2(𝐺,𝑘), 𝒕𝑦
(𝐻)� can be used as the prior for generating candidates and [𝒕𝑦

(𝐷)| 𝜷(𝐺,𝑘),  𝜎𝜂
2(𝐺,𝑘), 

(𝜂𝑦𝑏
(𝐷)), 𝒕𝑦

(𝐻) ] as the likelihood for obtaining the posterior �(𝜂𝑦𝑏
(𝐷))�𝜷(𝐺,𝑘),  𝜎𝜂

2(𝐺,𝑘), 𝒕𝑦
(𝐷)� using the M-H algorithm. Here 

as for the H-level, a separate burn-in period is required to obtain even the first replicate from this new conditional 
MCMC for the estimate from cycle k at level D but as explained in the previous subsection more replicates are also 
produced for the same cycle k to serve as candidates for the conditional MCMC at the next lower level of hierarchy. 
The likelihood  [𝒕𝑦

(𝐷)| 𝜷(𝐺,𝑘),  𝜎𝜂
2(𝐺,𝑘), (𝜂𝑦𝑏

(𝐷)), 𝒕𝑦
(𝐻) ] can be easily obtained from the residual part of 𝒕𝑦

(𝐷) independent 

of 𝒕𝑦
(𝐻) by noting that 𝒕𝑦

(𝐻) is a linear combination of 𝒕𝑦
(𝐷). Specifically, consider a nonsingular linear transformation 

matrix (A) of the 𝐾𝐷 −vector 𝒕𝑦
(𝐷) to obtain  

 

𝑨𝒕𝑦
(𝐷) = ��𝑡𝑦ℎ

(𝐻)�
1≤ℎ≤𝐾𝐻

′
, … , �𝑡𝑦𝑑

(𝐷)�
1≤𝑑≤𝑚ℎ

(𝐷)−1

′
, … � ′      (14) 

 
where 𝑚ℎ

(𝐷) is the number of D-level domains within the domain h at the higher H-level and 𝐾𝐷 = 𝐾𝐻 +

∑ (𝐾𝐻
ℎ=1 𝑚ℎ

(𝐷) − 1). Now orthogonalize the (𝐾𝐷 − 𝐾𝐻) estimates 𝑡𝑦𝑑
(𝐷) in 𝑨𝒕𝑦

(𝐷) with respect to �𝑡𝑦ℎ
(𝐻)�

1≤ℎ≤𝐾𝐻

′
 by 

regression to obtain the independent normally distributed data vector (denote by 𝒕𝑦
(𝐷|𝐻)) to be used for updating 

(𝜂𝑦𝑏
(𝐻,𝑘)). The replicate values (𝜂𝑦𝑏

(𝐻,𝑘)) from the previous level H for the kth cycle serve as candidates in the M-H 

algorithm. The accepted candidate value (𝜂𝑦𝑏
(𝐻,𝑘)) or the current value gives the updated estimator (𝜂𝑦𝑏

(𝐷,𝑘)) and this 

completes the cycle k for the kth replicate from �(𝜂𝑦𝑏
(𝐷))�𝜷(𝐺,𝑘),  𝜎𝜂

2(𝐺,𝑘), 𝒕𝑦
(𝐷)�.  

 
For each k, the replicate SAE estimators {𝜃𝑦𝑑

(𝐷,𝑘), d =1,…, 𝐾𝐷} so obtained are ratio-adjusted to estimators {𝜃𝑦ℎ
(𝐻,𝑘), 

h=1,…, 𝐾𝐻} from the H-level for hierarchical benchmarking, and thus an empirical benchmark-adjusted HFHB-
posterior of {𝜃𝑦𝑑

(𝐷), d =1,…, 𝐾𝐷} is obtained. Observe that resulting posterior means 𝜃�𝑦𝑑,𝐻𝐹𝐻𝐵 satisfy the H-level 
SAEs 𝜃�𝑦ℎ,𝐻𝐹𝐻𝐵 by construction because each replicate does. Similarly, we can obtain the HFHB-posterior at the 

next lower level and finally of {𝜃𝑦𝑔
(𝐺), g =1,…, 𝐾𝐺} at the lowest G-level.  

 
5.4 Variance and Interval Estimates Adjusted for Hierarchical Benchmarking and Estimated fixed 
Parameters: The point estimates at different levels of the hierarchy, although based on different datasets, satisfy 
benchmark constraints to hierarchical SAEs exactly. The corresponding HFHB-posteriors are automatically adjusted 
for hierarchical benchmarks and extra variability due to estimation of fixed parameters. Therefore, posterior 
variances from the HFHB-posteriors provide MSE estimates that are adjusted for extra uncertainty. Similarly, 
interval estimates reflect appropriate extra uncertainty. Note that with respect to the traditional posterior distribution 
at the lowest G-level HB model, the HFHB-estimates are nonoptimal under the squared error loss. The extra 
uncertainty arises because optimal estimates are not subject to hierarchical benchmarking required here for internal 
consistency and face validity. However, with respect to other criteria such as the frequentist MSE, the HFHB-
estimates may be more efficient than the traditional HB-SAEs.  
 
6. Proposed HFHB Solution and Its Generalization to Two Time Points 
 
First we provide a complete stepwise description of the proposed HFHB solution whose features were described in 
earlier sections. We will then consider how temporal correlations can be included in modeling with data from 
repeated surveys such as ACS to create surrogates for additional predictor covariates and efficiency.  
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6.1 Description of HFHB: A stepwise description is given below. 
 
Step I: Write the HB model at the B-level and group the B-level to the G-level for making the observation error V-C 
matrix stable. Now enlarge the set of covariates for approximate benchmarking of synthetic estimates from the G-
level to selected high level direct estimates. 
 
Step II: Compute the HB posterior of (𝜷,𝜎𝜂2, (𝜂𝑦𝑏) 1≤𝑏≤𝐾𝐵) based on MCMC replicates and the M-H algorithm using 
the G-level data. Obtain estimates of the fixed parameters (𝜷,𝜎𝜂2) as posterior means. 
  
Step III: Cast the HB model of Step I into an LLMARC model assuming (𝜷,𝜎𝜂2) fixed at their estimated values. 
Compute QL-estimates (like EBLUPs from LMM) of model parameters and perform frequentist diagnostics, both 
internal and external to the sample.  
 
Step IV: Repeat Steps I to III until the model is found to be adequate. 
 
Step V: Once the B-level model is accepted using data from the G-level, start from top at the H-level to obtain 
HFHB-SAEs before proceeding down to lower levels under hierarchical aggregation of B-level direct estimates. 
Obtain the joint HFHB-posterior from the marginal-conditional MCMC replicates ( 𝜷(𝐺,𝑘),  𝜎𝜂

2(𝐺,𝑘)) and (𝜂𝑦𝑏
(𝐻,𝑘)) for 

k = 1,…, M, and the corresponding replicates {𝜃𝑦ℎ
(𝐻,𝑘), h =1,…, 𝐾𝐻}. These replicates provide benchmarks for the 

next lower level. 
 
Step VI: Given ( 𝜷(𝐺,𝑘),  𝜎𝜂

2(𝐺,𝑘)) and (𝜂𝑦𝑏
(𝐻,𝑘)) for each replicate k from Step V, update (𝜂𝑦𝑏

(𝐻,𝑘)) using the next lower 

level (i.e., the D-level) more detailed information in terms of aggregates of direct estimates to obtain (𝜂𝑦𝑏
(𝐷,𝑘)) and 

ratio-adjust them to replicate benchmarks from the corresponding previous higher level replicate k in Step V. 
 
Step VII: Update (𝜂𝑦𝑏

(𝐷,𝑘)) for each replicate k using more detailed aggregate information from other intermediate 
lower levels until the lowest G-level is reached. Compute hierarchically benchmarked 𝜃 −estimates at each level. 
 
Step VIII: Compute point estimates as averages of marginal-conditional MCMC replicates for different hierarchical 
aggregation levels. Check for internal consistency of point estimates and their replicates. Finally obtain variance and 
interval estimates using replicate estimates. 

6.2 Incorporating Temporal Correlation Over Two Time Points: The ACS data used for the SAHIE application 
are repeated over years. By combining cross-sectional and time series data, efficiency of SAEs can be considerably 
improved because past year estimates can provide highly correlated information for current year estimates. Here 
although the number of time points is small unlike usual time series applications, there are many observations (or 
number of domains) for each time point. A state-space model can be conveniently used to introduce dependence 
under both frequentist and Bayesian approaches to SAE; see e.g., Carlin, Polson, and Stoffer (1992), Singh, Mantel 
and Thomas (1994) and Rao (2003, pp. 162). Moreover, due to the recursive updating feature of state-space 
modeling via Kalman filtering, it is possible to update only current year estimates based on past observations 
without updating or revising previous year estimates. This provision of sub-optimal estimation is desirable in 
practice so that already published past year estimates are not revised, and can be conceptually justified under the 
proposed Bayesian-frequentsit integrated approach.  
 
Specifically, for the HB model considered in this paper, we can assume that the regression parameters 𝜷𝜏 do not 
evolve over time so that benchmarking of G-level synthetic estimates to high level direct estimates can be built-in 
through extra covariates at each time point. This is not likely to have much practical consequence because 
𝜷𝜏 −parameters can be estimated quite precisely from the cross-sectional data on G-level small domains; see also 
Singh and Roberts (1992). Besides it introduces considerable simplicity in modeling over time. A simple random 
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walk model can then be employed for evolution of random effects 𝜂𝑦𝑏𝜏 over time which has a reasonable 
implication in that  𝜂 −parameters from nearby past are more correlated with the current parameter than distant past. 
Using G-level data from the time point 𝜏 − 1 , the HB-model is used to obtain the posterior of (𝜷𝜏−1,𝜎𝜂,𝜏−1

2 ). Next, 
given a replicate value of 𝜎𝜂,𝜏−1

2 , the posterior of (𝜷𝜏,𝜎𝜂,𝜏
2 ) is obtained using the G-level data from 𝜏.  Here the 

relation 𝜎𝜂,𝜏
2 = 𝜎𝜂,𝜏−1

2 + 𝜎𝜁2 under the random walk model is used for the posterior where 𝜎𝜁2 denotes the variance of 
the random walk error term. Now starting top-down with the hierarchical aggregate data at time 𝜏 − 1, we can use 
HFHB to compute relevant posteriors, and then use time 𝜏 data to update the posterior of 𝜎𝜁2 from the G-level data 
and update 𝜼𝜏 parameters at different levels successively from hierarchical aggregate data as in the case of a single 
time point. Thus HFHB posterior is used to update current year estimates without revising previous year estimates. 
We remark that if the sampling errors are correlated over time as is usually the case with repeated surveys, the G-
level data of direct estimates at time 𝜏 need to be regressed on the time 𝜏 − 1  data first to make them uncorrelated 
before updating current time parameter estimates using previous time point data.    
 
7. Summary and Remarks 

The problem considered in this paper is a difficult one but very interesting with a lot of practical appeal. It arose in 
the context of SAHIE using the ACS data. We considered an aggregate level SAE model instead of the unit level to 
account for informative sampling designs and a building-block model in the interest of the feasibility of the 
exchangeability assumption and having a single underlying model for all levels of small domains. We preferred 
modeling domain totals instead of area means to avoid ratio bias and the problem in approximating the observation 
error V-C matrix due to small or no samples. Also modeling totals allows for grouping domains for stable estimated 
V-C matrix and thus avoiding the problem of modeling or smoothing it. We used a log linear mixed model to satisfy 
range restrictions of positive mean functions.  
 
The solution proposed arose naturally in trying to include various frequentist and Bayesian features. It required a 
new construct (termed HFHB-posterior) because of the use of hierarchical aggregation of direct estimated totals of 
lowest level domains or small areas to render SAEs close to direct estimates at higher levels and the need of internal 
consistency between SAEs through hierarchical benchmarking. This led to work with an HB model with a 
frequentist LLMARC representation for built-in benchmarking of lower level synthetic estimates. The LLMARC 
representation of the HB formulation allows for built-in benchmarking, LMM-type frequentist diagnostics, and a 
simple shrinkage-type interpretation of QL-SAEs because of an analytically closed form of SAEs. The HFHB-
posterior was proposed to obtain benchmark-adjusted posteriors of HFHB-SAEs and hence their MSE and interval 
estimates. When dealing with two time points, the construct of HFHB-posterior can be used to update the (cross-
sectional) posterior of current parameters using longitudinal correlated data without updating the (cross-sectional) 
posterior of previous time point parameters, and thus preserving the previously published estimates—a highly 
desirable feature in practice.  
 
Besides introducing temporal correlations to take advantage of existing additional predictors via state space 
modeling, spatial correlations also provide additional effective predictors through simultaneous auto-regressive 
modeling and can be incorporated with the proposed HFHB modeling; see Rao (2003, p. 86) and Cressie (1993). In 
the SAHIE application, besides ACS data for direct estimates, alternative independent sources such as the 2000 
decennial Census long form with income information, the IRS exemptions, and the SNAP counts for the state and 
county levels are also available that can be used as additional aggregate level covariates. Similarly independent 
estimates from Medicaid/CHIP counts for insurance coverage can be used as covariates in modeling the ACS 
estimates. Note that for covariates, it is not required that estimated covariate totals be unbiased for the corresponding 
true covariate totals. This does not lead to concerns about biased estimates of regression parameters due to random 
errors in these covariate totals. This is for the reason that the small area and not the original regression parameters 
are of direct interest and hence, we can treat covariates with measurement errors as surrogates of original covariates. 
The HB model of interest can be defined conditional on these surrogate covariates because their errors are 
independent of sampling or observation errors.  Finally, we note that although the HFHB solution was presented for 
the univariate case, it is easily seen to be applicable to the multivariate case where the hyper-prior for the general 



14 
 

covariance matrix of the random effect vector can now be chosen as the flat prior or as an inverse Wishart with 
parameters reflecting lack of information; see Rao (2003, pp. 273). In the SAHIE context, the multivariate vector is 
the 10-vector of counts for IC by IPR categories as mentioned in Section 2.  
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