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Abstract

Many variables of interest in business and agricultural surveys have skewed distributions. An example from
the National Agricultural Statistics Service is the acres harvested for a particular crop. We investigate small
area estimation methods for skewed data under the assumption that a lognormal model is a reasonable
approximation for the distribution of the response given covariates. Empirical Bayes (EB) predictors and
estimators of the mean squared error of the predictors are proposed. In simulation studies, the EB predictors
are more efficient than a direct estimator and more efficient than a synthetic estimator.

1. Introduction

Small area estimation is a class of applications where domain sample sizes are too small to support reliable
direct estimators. A common approach to small area estimation is to use model-based estimators instead of
design-based estimators. Efficiency gains are realized if the models incorporate information about variability
among the units in the population or the structure of the domain means.

1.1 Linear Unit-Level Model

Battese, Harter, and Fuller (1988) use a linear mixed model to predict the area planted to corn and soybeans
in Iowa counties. Crop areas are obtained for a sample of segments in each county through farmer inter-
views. Covariates, obtained from satellite data, are the number of pixels classified as corn and soybeans.
The covariates are available for all sampled segments, and the population mean of the covariates is known
for each county.

In the Battese, Harter, and Fuller (BHF) model,

yij = λ0 + x′ijλ1 + vi + εij , (1)

where yij is response for unit j in county i, xij is the corresponding vector of covariates, and
(vi, εij) ∼ N(0,diag(σ2

v , σ
2
ε )). The quantity to predict is

ȳNi = λ0 + x̄′Ni
λ1 + vi + ε̄Ni , (2)

where x̄Ni
is the mean of xij for the population of segments in county i.

Three types of predictors have been used for the linear setting. First, a synthetic estimator (or indirect
estimator) is obtained by replacing a nonsampled unit with an estimator of its expected value. Rao (2003,
Chapter 4) discusses several synthetic estimators. A synthetic estimator for area i is of the form

ŷsyni = N−1
i


ni∑
j=1

yij +

Ni∑
j=ni+1

λ̂0,ols + x′ijλ̂1,ols

 , (3)

where (λ̂0,ols, λ̂
′
1,ols)

′ is the OLS estimate of (λ0,λ
′
1), j = 1, . . . , ni indexes the sampled units, and j =

ni + 1, . . . , Ni indexes the nonsampled units for area i. A second predictor for a linear model is a model
based direct estimator (Chandra and Chambers, 2009). The model based direct estimator is of the form

ŷMBDE
i = N−1

i

ni∑
j=1

wijyij . (4)
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The model-based direct estimator is a weighted sum of the sampled units in area i. The weights are defined
in such a way that the weighted sum of all the units in the sample is the BLUP of the population total. A
third type of predictor, which is widely-used for small area estimation, is an EBLUP. An EBLUP for the
population mean is

ŷEBLUPi = N−1
i


ni∑
j=1

yij +

Ni∑
j=ni+1

λ̂0 + x′ijλ̂1 + γ̂i(ȳsi − λ̂0 − x̄′siλ̂1)

 , (5)

where γ̂i = (σ̂2
v + n−1

i σ̂2
ε )−1σ̂2

v , (ȳsi, x̄
′
si) = n−1

i

∑ni

j=1(yij ,x
′
ij), and (λ̂0, λ̂

′
1, σ̂

2
v , σ̂

2
ε ) is the vector of REML

estimators. The EBLUP for the BHF model shrinks a direct estimator toward a synthetic estimator by
a factor that depends on the relative magnitudes of estimates of σ2

v and σ2
ε . The weight assigned to the

direct estimator decreases as the ratio of the between-area variance component to the within-area variance
component decreases or the sample size decreases. See Rao (2003) for a discussion of small area prediction
based on mixed models.

1.2 Lognormal Unit-Level Model

We consider a situation where the distribution of the response variable has a positive support, the variance
is a function of the mean, and relationships between the mean response and the covariates are nonlinear.
Because the assumptions of the linear model with normal errors are violated, linear predictors are inefficient.
We consider the specific situation where units in the population are assumed to have lognormal distributions.
We write the loglinear mixed model for the variable of interest, yij , as

log(yij) := lij = β0 + zijβ1 + ui + eij , (6)

where (ui, eij) ∼ N(0,diag(σ2
u, σ

2
e)), and zij is a vector of appropriately transformed covariates. For example,

zijk = log(xijk) for k = 1, . . . , p. Let the observations {(yij , zij) : i = 1, . . . , D; j ∈ si} be available, where
si denotes the set of j in the sample for area i, and | si | = ni. Let Ui denote the set of Ni indexes in
the population for area i, and let s̄i denote the set of j in area i that are not in the sample. Assume that
zij is available for the population of Ni values in area i, and let {yij ; i = 1, . . . , D, j ∈ si} ∪ {zij : i =
1, . . . , D, j ∈ Ui} be the available data. Let θ = (β0,β

′
1, σ

2
u, σ

2
e)′ be the vector of model parameters, and let

θ̂ = (β̂0, β̂
′
1, σ̂

2
u, σ̂

2
e)′ be the REML estimator of θ. The quantity of interest is the area mean,

ȳNi =
1

Ni

∑
j∈Ui

yij . (7)

In this paper, we compare three predictors of ȳNi
.

The first predictor, based on an estimator of Karlberg (2000), is analogous to the synthetic estimator for
the linear model. Karlberg (2000) considers a situation where the objective is to estimate a single finite
population mean (equivalently, a total). He assumes that the units in the population are realizations from
a lognormal distribution and that a covariate is observed for all units in the population. We adapt the
Karlberg (2000) procedure to the small area context.

The second predictor is a model-based direct estimator developed in Chandra and Chambers (2011). The
Chandra and Chambers (2011) estimator is a weighted sum of the sampled units, where the weights are
defined to give the minimum mean squared error linear predictor of the population mean if the parameters
of the lognormal distribution were known.

The third predictor is an empirical Bayes (EB) predictor. The empirical Bayes (EB) method is a gen-
eral approach to small area estimation that is appropriate for a broad class of linear and nonlinear models.
An EB predictor for squared error loss is an estimator of the conditional expectation of the small area
parameter given the observed data and the underlying model parameters. For a linear mixed model with
normal errors, an EBLUP is an EB predictor (See Rao, 2003 Section 9.1).
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Slud and Maiti (2006) construct an EB predictor for a small area mean under an assumption that the
area-level direct estimators have lognormal distributions. They derive a closed form expression for the EB
predictor and give an approximately unbiased MSE estimator. They use the EB predictor to obtain estimates
of county-level rates of school-aged children in poverty using data from the US Census Bureau’s “Small area
income and poverty estimation” project. The EB predictor proposed in this paper differs from the Slud and
Maiti (2006) predictor because we work with unit-level data instead of area-level data.

In Section 2, we discuss the estimator based on Karlberg (2000) and the Chandra and Chambers (2011)
estimator in more detail. We also propose an empirical Bayes predictor for the lognormal model in Section
2. In Section 3, we compare the predictors defined in Section 2 through simulations. We conclude in Section
4 with a summary and a discussion of areas for future work.

2. Predictors for the Lognormal Model

2.1 A Type of Synthetic Estimator

Karlberg (2000) addresses a situation where the quantity of interest is a mean for a single area instead
of many small area means. She derives a predictor under an assumption that the units in the population are
realizations from the model (6) with σ2

u = 0. In the simulations in Karlberg (2000), the predictor that she
suggests is more efficient than a regression estimator.

We modify the approach of Karlberg (2000) to define a type of synthetic estimator for the lognormal model.
The resulting estimator of ȳNi is,

ŷkarlbergNi
= fiȳni

+ (1− fi)
(

1

Ni − ni

)
(
∑
j∈s̄i

ŷkarlbergij ), (8)

where ŷkarlbergij is the estimator of E[yij |θ, zij ] defined in (10) below. By properties of the normal moment
generating function,

E[yij |θ, zij ] = exp{β0 + z′ijβ1 + 0.5(σ2
u + σ2

e)}. (9)

Because E[yij | θ̂, zij ] is a nonlinear function of the REML estimator of θ, E[yij | θ̂, zij ] is a biased estimator
of (9). To correct for the bias, we use the method of Karlberg (2000) and define the estimator,

ŷkarlbergij = (ĉkarlbergij )−1E[yij | θ̂, zij ], (10)

where

ĉkarlbergij = exp
{

0.5((1, z′ij)V̂ {β̂}(1, z′ij)′ + 0.25V̂ {σ̂2
u + σ̂2

e})
}
, (11)

and V̂ {β̂} and V̂ {σ̂2
u + σ̂2

e} are estimates of the variances of β̂ and σ̂ obtained from the inverse information
matrix. (See Rao, 2003, pg. 139.)

2.2 A Model-Based Direct Estimator

Chandra and Chambers (2011) derive an estimator of the form
∑
j∈si ŵijyij , where ŵij is an estimator of

the weight that gives the BLUP of the population mean if the parameters of the model (6) are known. To
derive the predictor, Chandra and Chambers (2011), use the approximation,

E[yij ] ≈ γo + γ1ŷ
karlberg
ij , (12)

and

C{yij , yik} ≈ ŷkarlbergij ŷkarlbergik

{
exp(σ̂2

u)− 1 + exp(σ̂2
u)(exp(σ̂2

e)− 1)I[j = k]
}
, (13)
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where ŷkarlbergij is defined in (10), and the covariance between two units from different areas is zero. The
approximations for the first and second moments in (12) and (13) follow from the moment generating function
of a normal distribution. The vector form of (12) is

E[yN ] ≈ X̂Uγ,

and

C{yN ,y′N} ≈
(
V̂ss V̂ss
V̂sr V̂rr

)
,

where γ = (γo, γ1)′,

X̂U = (X̂ ′s, X̂
′
r)
′ =

(
(1′s,1

′
r)
′, (ŷkarlbergs , ŷkarlbergr )′

)
,

yN = (y′s,y
′
r)
′, ys and yr are the vectors of sampled and nonsampled units, respectively, and ŷkarlbergs and

ŷkarlbergr are the vectors containing ŷkarlbergij for the sampled and nonsampled units. The elements of the

covariance matrices V̂ss and V̂sr are defined in (13). If one treats the ŷij , σ̂
2
u, and σ̂2

e in (12) and (13) as fixed

values, then (12) is a linear model for the mean of yij , and the BLUP of N−1
∑D
i=1

∑Ni

j=1 yij is N−1ŵ′ys,
where

ŵ = 1s + Ĥ ′s(X̂
′
U1U − X̂ ′s1s) + (Is − Ĥ ′sX̂ ′s)V̂ −1

ss V̂sr1r,

and

Ĥs = (X̂ ′sV̂
−1
ss X̂s)

−1X̂ ′sV̂
−1
ss .

The model-based direct estimator defined in Chandra and Chambers (2011) is

ŷTrMBDE
Ni

= N−1
i

∑
j∈si

ŵijyij , (14)

where ŵij is the element of ŵ associated with unit (i, j). The “Tr” in the label “TrMBDE” stands for “trans-
formed” and is used to distinguish the estimator (14) from a model-based direct estimator for a linear model.

2.3 An Empirical Bayes Predictor

The minimum mean squared error (MSE) predictor of ȳNi is E[ȳNi | (y, z)], where (y, z) = {yij ; i =
1, . . . , D, j ∈ si} ∪ {zij : i = 1, . . . , D, j ∈ Ui}. (See for example, Rao 2003, Chapter 9.) Under the
assumptions of the lognormal model (6), a closed form expression for the minimum MSE predictor is

ȳMMSE
Ni

(θ) =
1

Ni
[
∑
j∈si

yij +
∑
j∈s̄i

yMMSE
ij (θ)], (15)

where

yMMSE
ij (θ) = exp{β0 + z′ijβ1 + γi(l̄is − β0 − z̄′isβ1) + 0.5σ2

e(γin
−1
i + 1)}, (16)

(l̄is, z̄
′
is) = n−1

i

∑
j∈si(lij , z

′
ij), and γi = σ2

u(σ2
u + n−1

i σ2
e)−1. The form of the minimum MSE predictor in

(15) follows from the moment generating function of the lognormal distribution and the property that

(ui, eij) | (y, z) ∼ N{[γi(l̄is − β0 − z̄′isβ1), 0],diag(γin
−1
i σ2

e , σ
2
e)}

for j /∈ si. A detailed derivation of (15) is given in the Appendix.
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The minimum MSE predictor (15) is not possible to compute unless the true θ is known. We replace
the true θ in (15) with the REML estimator to obtain the empirical Bayes (EB) predictor,

ŷEBNi
= ȳMMSE

Ni
(θ̂) =

1

Ni

∑
j∈si

yij +
∑
j∈s̄i

ŷEBij

 , (17)

where

ŷEBij = yMMSE
ij (θ̂) (18)

= exp
{
β̂0 + z′ijβ̂1 + γ̂i(l̄is − β̂0 − z̄′isβ̂1) + 0.5σ̂2

e(γ̂in
−1
i + 1)

}
.

3. Simulations

We compare the EB predictors to the synthetic estimator and the direct estimator defined in Section 2
and evaluate the performance of the MSE estimator through simulations. The model for the simulations is
(6) with a one-dimensional covariate zij , where zij ∼ N(µz, σ

2
z). We generate data for 30 areas (D = 30)

and set (Ni, ni) = (133, 5) for 15 of the areas and (Ni, ni) = (533, 20) for the other 15 areas so that
(N,n) = (9990, 375).

We pick the parameters in Table 1 so that the mean and variance of yij is approximately equal to the
mean and variance of the number of chickens per segment in a 1960’s United States Department of Agricul-
ture area survey discussed in Fuller (1991). We alter the variance components to study the effects of varying
the relative magnitudes of σ2

u, σ2
e , and σ2

z on the properties of the predictors. For the first two simulations,
σz = 1.58 and the ratio σ2

uσ
−2
e is 0.51 or 0.15. For the second two simulations, we set σz = 1.24 and increase

σ2
u and σ2

e so that σ2
uσ
−2
e is 0.45 or 0.15.

Parameter Configurations

Set σz σ2
uσ
−2
e σu E[Y ] V {Y }

1 1.58 0.51 0.55 16 4493
2 1.58 0.16 0.35 16 4493
3 1.24 0.45 0.71 15.5 4006
4 1.24 0.15 0.46 15.5 5006

(µz, β0, β1) = (3.253,−1.62, 0.9)

Table 1: Parameter configurations for simulations

We use a Monte Carlo (MC) sample size of 2000. For each MC sample, we generate a new set of zij from a
normal distribution and select a stratified simple random sample where the areas are the strata. We compute
the following predictors of ȳNi

:

1. Karlberg - the Karlberg (2000) estimator defined in (8)

2. TrMBDE - the Chandra and Chambers (2011) model-based direct estimator defined in (14)

3. EB - the empirical Bayes predictor defined in (17)

3.1 Empirical Properties of Small Area Predictors

We define the MC relative bias of predictor ŷNi
for area i by,

RBi =
EMC [ŷNi

− ȳNi
]

E[ȳNi ]
, (19)
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where E[ȳNi ] is given in the fifth column of Table 1 and EMC [·] denotes the MC mean (the average of the
2000 samples). Table 2 contains the average MC relative biases of the alternative predictors, where the
average is across areas with the same sample size. Estimates of the MC standard errors are in parentheses.
For the two parameter sets with σz = 1.58, the MC relative biases of all predictors are small relative to the
MC standard errors. The average MC relative biases of the TrMBDE and Karlberg predictors are essentially
zero for all parameter configurations and sample sizes. For the two parameter sets with σz = 1.24, the EB
predictor has a positive MC relative bias, and for fixed ni, the average MC relative bias of the EB predictor
is larger for σ2

uσ
−2
e = 0.15 than for σ2

uσ
−2
e = 0.45. For each parameter set with σz = 1.24, the average MC

relative bias of the EB predictor is smaller for ni = 20 than for ni = 5. We conjecture that the average MC
relative bias of the EB predictor increases as σ2

z decreases and (σ2
u, σ

2
e) increase because the bias of the EB

predictor increases as the variances of the REML estimators increase. For the parameters and sample sizes
considered here, the average MC relative bias of the EB predictor is less than 3% of the average MC RMSE.

Average Relative Biases (%) for ni = 5 Average Relative Biases (%) for ni = 20

σ2
uσ

−2
e σz TrMBDE Karlberg EB TrMBDE Karlberg EB

0.51 1.58 -0.40 0.03 -0.17 -0.09 -0.22 0.42
(0.33) (0.36) (0.24) (0.17) (0.33) (0.14)

0.16 1.58 -0.06 -0.48 0.21 -0.29 -0.21 0.31
(0.37) (0.26) (0.23) (0.18) (0.22) (0.14)

0.45 1.24 0.64 -0.07 1.31 -0.43 0.01 0.44
(0.55) (0.48) (0.33) (0.27) (0.46) (0.19)

0.15 1.24 0.49 0.23 1.44 -0.09 0.03 0.87
(0.61) (0.33) (0.29) (0.30) (0.29) (0.19)

Table 2: Average MC relative biases (RBi) of alternative predictors of ȳNi
. MC standard errors are in

parentheses.

Table 3 contains the average ratios of the MC MSE’s of the alternative predictors to the MC MSE of the
EB predictor. The relative MC MSE of predictor ŷNi

for area i is

RelMSEi =
MSEMC(ŷNi

)

MSEMC(ŷEBNi
)
, (20)

and Table 3 contains averages of RelMSEi across areas with the same sample size. For fixed (ni, σ
2
z), the

relative MSE of the model-based direct estimator (TrMBDE) is larger for, σ2
uσ
−2
e = 0.16 or 0.15 than for

σ2
uσ
−2
e = 0.51 or 0.45. The relative MSE of the TrMBDE predictor is larger for ni = 5 than for ni = 20

for each parameter configuration. For a fixed parameter set, the relative MSE’s of the Karlberg predictor
increase as the sample size increases. For a fixed sample size and value of σz, the relative MSE of the
Karlberg predictor increases as the ratio of σ2

u to σ2
e increases.

The relationships between the relative MSE’s of the TrMBDE and Karlberg predictors to the values of
the variance parameters and sample sizes are not surprising if we consider an analogy with the linear model
of Section 1.1. For the BHF model of Section 1.1, the ratio of the MSE of a mixed-model predictor to the vari-
ance of the sample mean (a simple direct estimator) is approximately σ2

v(σ2
v +σ2

εn
−1
i )−1, and the ratio of the

MSE of a mixed-model predictor to the MSE of a synthetic estimator is approximately 1−σ2
v(σ2

v+σ2
εn
−1
i )−1.

Because the TrMBDE predictor is a version of a direct estimator, we expect the ratio of the MSE of the
TrMBDE predictor to the MSE of the EB predictor to decrease as the sample size increases and the ratio
σ2
vσ
−2
ε increases. Because the Karlberg predictor is a type of synthetic estimator, we expect the opposite

pattern in the relative MSE for the Karlberg predictor.
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Average RelMSEi for ni = 5 Average RelMSEi for ni = 20

σ2
uσ
−2
e σz TrMBDE Karlberg TrMBDE Karlberg

0.51 1.58 1.809 2.215 1.478 6.052
0.16 1.58 2.781 1.317 1.766 2.499
0.45 1.24 2.747 2.163 2.115 5.930
0.15 1.24 4.481 1.301 2.653 2.533

Table 3: Average relative MC MSE’s (RelMSEi) of the alternative predictors of ȳNi
to the EB predictor.

4. Concluding Remarks

We compared three predictors of a small area mean for a skewed response variable. The model-based
predictor, TrMBDE (Chandra and Chambers, 2011), is a version of a direct estimator. The predictor based
on Karlberg (2000) is a type of synthetic estimator (Rao, 2003, Chapter 4) because the predictor of a non-
sampled unit is an estimator of E[yij | zij ] and does not directly involve any of the sampled units. The EB
predictor is an estimator of the minimum MSE predictor of the small area mean.

Because the Karlberg (2000) predictor is a type of synthetic estimator, the relative efficiency of the Karlberg
(2000) predictor improves as ni decreases and σ2

uσ
−2
e decreases. The efficiency of the Chandra and Chambers

(2011) direct estimator improves as ni increases and as σ2
uσ
−2
e increases. As discussed in Section 3, these

patterns are expected by analogy with a linear model. Because the EB predictor is a nonlinear function
of the REML estimate of θ, the EB predictor is biased. The MC bias of the EB predictor is typically less
than 3% of the MC RMSE for the parameters and sample sizes considered in our simulation study. An
examination of bias-corrected EB predictors is an area of current research.

We did not discuss MSE estimation in this paper. We obtained a closed-form MSE estimator that ac-
counts for the estimation of the unknown parameters. In simulations not discussed here, the MC relative
bias of the MSE estimator is less than 11%, and the empirical coverages of nominal 95% prediction intervals
are between 94% and 96%. A more thorough evaluation of the MSE estimator is a topic for future research.

For the simulations in Section 3, the model underlying the minimum MSE predictor is true, so it is not
surprising that the EB predictor has a smaller MSE than the other predictors. An evaluation of the proper-
ties of the procedures when the model is misspecified and a study of the design properties of the model-based
predictors are areas of current research.

In this study, we compared an EB predictor to a model-based direct estimator and a synthetic estima-
tor. One can construct other shrinkage estimators for skewed data. An example is the area-level predictor
of Slud and Maiti (2006) discussed in the Introduction. Current work includes a comparison of the EB
predictors defined in Section 2.3 to other shrinkage estimators for skewed data.

In our analysis of the simulation study, we observed that the predictors, the mean squared errors of the
predictors, and the mean squared error estimators are skewed and have large variances. This suggests that
loss functions other than squared error loss may be more appropriate for highly skewed data. Future work
may involve an evaluation of the proposed predictors for different loss functions or derivations of predictors
that are optimal with respect to different loss functions.

We restricted our attention to a situation where the sample design within areas is simple random sam-
pling. Modifications for complex sampling or nonresponse are potential areas for future work.
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Appendix: Derivation of Minimum MSE Predictor

The minimum MSE predictor is

E[ȳNi | (y, z)] =
1

Ni

∑
j∈si

yij +
∑
j∈s̄i

E[yij | (y, z)]

 . (21)

Under the model (6),

yij = exp(β0 + z′ijβ1)exp(ui + eij),

and the conditional expectation of yij given the available data is

Eθ[yij | (y, z)] = exp(β0 + z′ijβ1)E[exp(ui + eij) | (y,x)]. (22)

By properties of the normal distribution, for j ∈ s̄i,

(ui, eij) | (y, z) ∼ N{[γi(l̄is − β0 − z̄′isβ1), 0],diag(γin
−1
i σ2

e , σ
2
e)}. (23)

By (23) and the moment generating function of the lognormal distribution,

E[exp(ui + eij) | (y, z)] = exp{γi(l̄is − β0 − z̄′isβ1) + 0.5(γin
−1
i σ2

e + σ2
e)} (24)

for j ∈ s̄i. Together, (24), (22), and (21) justify (15).
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