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1 Introduction

Discrete-event simulation modeling has become the most commonly used tool for performance evaluation of

stochastic dynamic systems in science and engineering, including such complex systems as manufacturing and

material handling systems ([17] and [19]), logistics and transportation systems ([14]), healthcare and service

systems ([15] and [11]), computer and communication systems ([9]). These applications of simulation modeling

are results of significant achievements in electronic and computer technologies that have led to broad prolifer-

ation of powerful computers and computer networks, and significant achievements in software technology, that

have resulted in simple but very efficient human-computer interfaces. However, no technological innovation

can release simulators from their responsibility of ensuring that their simulation experiments produce credible

final results.

In this paper, we will describe how to use the simulation techniques for the field operations application of

a national household survey. We will discuss main problems and solutions of quantitative stochastic discrete-

event simulation, i.e. the stochastic simulation in which the emphasis is put on statistical correctness of

the final results. Whole spectrum of the problems will be covered: from generators of uniformly distributed

pseudo-random numbers, which play the role of original sources of randomness in stochastic simulation, to

methods of generation of system variables, such as interview length, contact time, in field representative’s

visits of sample households.

At the U.S. Census Bureau, the mission of the Field Division is to collect quality data at the right time

for the lowest cost. Therefore, there is a need to have a valid method of predicting cost, response rates, and

timing of new or continuing surveys for the field operations (per discussions with Bitzer ([3]) and others). This

project is intended to develop such a method.

In complex field operations for a household survey or census, the scheduling function is typically concerned

with determining the starting time and the sequence of visiting the cases assigned to the interviewers in which

system performance is to be optimized. The system performance is defined as controlling the cost and timing

and maximizing the response rates. The complexity and practical importance of the field operations scheduling

problem has motivated the development of models appropriate for a broad range of surveys and censuses, and

has focused attention on the impact of scheduling decisions on contact time and travel time. Most importantly,

the model would provide a tool for predicting costs, response rates, and timing before the survey begins.

Currently, regression analysis is used on the data set from the Field Division’s CARMN (Cost And Response

Management Network) and Population Division’s Planning Data Base ([16]) to explore survey-related cost

drivers for the CPS (Current Population Survey). Also, Shimizu and Lan [18] use a simplified overall cost

model based on the NHIS multistage sample.
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For example, one of the system performance measures is the cost. If TDC is the total direct cost of the

operation, then

TDC =

r∑
i=1

d∑
j=1

Cij , (1)

where Cij is the daily cost of FR (Field Representative or interviewer) i on jth day, r is the number of FRs,

and d is the number of days.

Cij = (Hij ×Rij) + (Mij × Pij), (2)

Hij = Total Hours

Rij = Hourly Rate

Mij = Total Mileage

Pij = Reimbursement Per Mile.

To accurately predict the total time spent for each FR each day, we further decompose the total hours,

Hij , into traveling time, contact time, interview time, and so on. Each time segment has its own statistical

distribution. For example, the traveling time follows a statistical distribution to be determined given the

traveling distance. We will describe how to obtain the statistical distribution for each time segment in the

next section.

The objective of the project is to build a model that will take the inputs of workload, staffing, traveling

time, productivity, etc., for the field operations of a survey. The output of the model will be the cost, response

rates, and timing to complete the operations based on the assumptions given to the input of the model. The

performance measures identified are, therefore, the cost, response rates, and timing. The final goal of the field

operations is to have Low cost, High response rates, and Short timing; it is referred to as LHS.

The current version of the model contains about 1888 lines of C++ code. The compiler used is Microsoft

Visual Studio .NET 2003. Section 2 gives a brief description of the simulation modeling concept. Section 3

describes the proposed approaches for the project. Section 4 gives a description of how to perform the input

modeling. Section 5 discusses random number and random variate generations. Section 6 briefly describes the

simulation model for the simplified field operations.Section 7 provides preliminary results of simulation runs

with different seeds and gives an example of sensitivity analysis of the model. Section 8 is the conclusion and

summary.

2 Preliminary Concept for Simulation Modeling

The concept of simulation modeling for the field operations is described in this section. The reader who

is familiar with simulation modeling should skip ahead. Simulation is the use of computations to implement

a model of some dynamic system or phenomenon, such as field operations. It is using a model implemented

as a computer program, rather than experimenting with a real system. In order to study the field operations

scientifically, we need to make a set of assumptions about how the operations work. These assumptions are

usually in the form of mathematical or logical relationships, and are therefore called mathematical or logical

models. A valid model will help decision makers gain some understanding of how the system behaves. The

field operations system is too complex to allow us to obtain a realistic model to be evaluated analytically.

Instead, a simulation solution is obtained by using a computer to evaluate the model numerically over a time

period of interest, and data are collected to estimate the desired characteristics of the model, i.e., the operating

cost, response rates, timing, etc.

We would like to propose a simulation model for the field operations. Specifically, we would like to use the

discrete event simulation technique to model the field operations system. Discrete event simulation concerns
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the modeling of a system as it evolves over time by a representation in which the variables change only at a

countable number of points in time. These points in time are the ones at which an event occurs, where an event

is defined as an instantaneous occurrence which may change the state of a system. In this paper, simulation

will be used to describe and analyze the behavior of the field operations system, ask what-if questions about

the system, and aid in the modification of the field operations when needed. A sensitivity analysis will also

be conducted to find out which potential solutions are the most cost effective methods to implement.

Although a discrete event simulation is usually done by computer, an example of simulation by hand is

given in [4]. If a simulation of field operations is done by hand, there is a limit to the complexity of the

operations that can be solved in this manner. Also the number of cases and the number of FRs that must

be included in the simulation model could be much larger and the number of times that the simulation must

be run for statistical purposes (output analysis) could be large. Therefore, the simulation modeling using

computers for the field operations is appropriate.

3 Proposed Approaches

So far, no similar work has been found in the literature describing the analytical or simulation modeling

of the operations. The field operation is a unique system in the operations research field. Developing an

analytical model for the operation requires an extensive investigation of the operation itself as well as the

investigation of the operations research techniques. In this project, we will use a computer simulation model

based on the concept described in Section 2 and this section.

As indicated before, we would like to propose a simulation model for the field operations. Developing a

valid simulation model involves three basic entities: the real system under consideration (the field operations

for a particular survey); a theoretical model of the real system; and a computer-based representation of the

model, the simulation program. The activities of developing a theoretical model from the real system are

referred to as simulation modeling, and the activities of developing a computer-based representation for the

theoretical model are referred to as simulation programming. We will use C++ as the programming language.

C++ is an object-oriented programming language that can be used to program an FR as an object. FRs are

the key persons to the success of the operations. The object-oriented simulation is a technique to view the

real system as being composed of various objects ([10]). The FR objects will be the core component of the

simulation model of the field operations. Other C++ classes related to the object-oriented simulation, such

as random number generation class, will be defined as well.

In the simulation programming, we will concentrate on modeling the behavior of interacting objects, such

as FRs, respondents, etc., over time. The behavior of the interaction also involves other important steps

in the simulation modeling and programming: random numbers and random variates generation, input data

analysis, output data analysis, etc.

The example in Section 2 used input values that were generated by spinners and a coin. In computer

simulation, the computer will generate independent random numbers that are distributed continuously and

uniformly between 0 and 1 [i.e., U(0, 1)]. These random numbers can be converted to the desired statisti-

cal distributions, or random variates. The random numbers and random variates generation can be easily

implemented with the object-oriented C++ language because the class definition in C++ can determine the

objects’ (random variates’) characteristics or properties.

Input data analysis is another important step in the simulation modeling and programming. Input data

modeling uses statistical methods to determine the desired statistical distributions needed for the random

numbers and random variates generation. We will give a more detailed description of input data analysis in

Section 4.

The analysis of simulation output begins with the selection of performance measures. As indicated before,

the performance measures of interest in field operations are cost, response rates, and timing. The primary

purpose of most simulation studies is the approximation of prescribed system parameters with the objective

of identifying parameter values that optimize some system performance measures. Because some of the input
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processes in the field operations simulation study are random, the output data are also random and runs of

the simulation result in estimates of performance measures. Unfortunately, a simulation run does not usually

provide independent, identically distributed (IID) observations; therefore, “classical” statistical techniques are

not directly applicable to the analysis of simulation output. Statistical techniques of the simulation output

analysis can be found in [1].

Finally, we will also perform a sensitivity analysis to determine the impact on the performance measures

if some of the input variables (parameters) can be controlled. This analysis is valuable in determining what

types of potential solutions are the most cost effective to implement. It will also be a feasibility study to

determine the limitations of the simulation modeling applied to the field operations.

4 Input Data Analysis

The most difficult aspect of simulation input modeling is gathering data of sufficient quality, quantity, and

variety to perform a reasonable analysis. After a preliminary study, we have identified part of the required

and available data sets as described below. If a data set is not available for the project, we will have to make

reasonable assumptions with help from the subject matter experts of Field Division. The following is a list of

data sets so far identified and required for the project:

1. the average speed distribution for an FR driving between households;

2. the time distribution for an FR to make contact with respondents;

3. the time distribution for an FR to complete an interview if the respondent is contacted;

4. contact histories ([2]).

A random input variable to a simulation model can be viewed as a stochastic process. A stochastic process

is often defined as a collection of random variables. In simulation modeling, the strongest assumptions of a

stochastic process that we can make are: (1) all of the random variables are probabilistically independent of

one another; (2) all of the random variables follow the same probability distribution and thus are said to be

identically distributed. In other words, FR’s are independent and follow the same rules. Also, the same type

of random variables associated with each FR are also independent and follow the same rules. For example,

the interview time of respondent A conducted by a particular FR is independent and identically distributed

as that of respondent B conducted by the same FR. Therefore, we propose the following methods to perform

the input data modeling for the simulation study: (a) tables and/or plots of estimated lag (linear) correlations

and (b) scatter diagrams for assessing independence and stability of distributions [20].

The input data modeling also includes fitting a probability distribution to the data. We will assume that

distributions are defined by their distribution functions, or equivalently, by their related density (continuous)

or mass (discrete) functions. If the “best” of the fitted distributions provides a reasonable representation of

the data, we will use it in the simulation. Otherwise, an empirical distribution will be used to represent the

data directly.

4.1 Outcome Frequency Distribution of NHIS

In NHIS (National Health Interview Survey), each sample household is assigned one of the 28 outcomes

after the visits of FRs. Table 1 lists the 28 possible outcomes and their frequency distribution from the 2004

interviews.

The following are the definitions used in the NHIS surveys:

• Eligible cases = total cases − (Type B’s + Type C’s);

• Complete cases = 201’s + 203’s;
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Table 1: The 2004 NHIS Frequency Distribution by Outcome

Original Adjusted
i Outcome Freq. %(fi) Cumul. %(gi) Cumul.

1 201 (completed interview) 30992 43.58 43.58 44.48 44.48
2 203 (sufficient partial interview, no follow-up) 5916 8.32 51.90 8.49 52.97

Type A

3 213 (language problem) 83 0.12 52.01 0.12 53.09
4 215 (insufficient partial interview) 519 0.73 52.74 0.74 53.83
5 216 (no one home, repeated calls) 1224 1.72 54.46 0.00 53.83
6 217 (temporarily absent, no follow-up) 312 0.44 54.90 0.45 54.28
7 218 (refused) 2604 3.66 58.56 3.74 58.02
8 219 (other-Type A) 570 0.80 59.36 0.82 58.83

Type B

9 223 (all arm force) 122 0.17 59.54 0.18 59.01
10 225 (all URE) 934 1.31 60.85 1.34 60.35
11 226 (vacant, nonseasonal)* 6330 8.90 69.75 8.90 69.25
12 228 (to be demolished)* 243 0.34 70.09 0.34 69.59
13 229 (under construction)* 245 0.34 70.44 0.34 69.94
14 230 (temporarily business or storage)* 203 0.29 70.72 0.29 70.22
15 231 (unoccupied site)* 226 0.32 71.04 0.32 70.54
16 232 (construction not started)* 41 0.06 71.10 0.06 70.60
17 233 (other-Type B)* 138 0.19 71.29 0.19 70.79
18 235 (vacant, seasonal)* 1295 1.82 73.11 1.82 72.61
19 236 (screened out) 13813 19.42 92.53 19.82 92.43

Type C: unit is not there

20 240 (demolished)* 236 0.33 92.87 0.33 92.77
21 241 (house-trailer mover)* 193 0.27 93.14 0.27 93.04
22 242 (out of segment bounds)* 137 0.19 93.33 0.19 93.23
23 243 (converted permanent business/storage)* 332 0.47 93.80 0.47 93.70
24 244 (merged)* 170 0.24 94.04 0.24 93.94
25 245 (condemned)* 26 0.04 94.07 0.04 93.97
26 246 (built after 4/1/1990) 3418 4.81 98.88 4.91 98.88
27 247 (other-Type C)* 261 0.37 99.24 0.37 99.24
28 248 (spawned in error)* 537 0.76 100.00 0.76 100.00

Total 71120 100.00 100.00 100.00 100.00

• Response rate = 1 − (Non-response rate);

• Non-response rate: proportion of eligible cases that were noninterviews (Type A’s)

Equation =
Type A’s

Eligible Cases
× 100; (3)

• Interview rate: proportion of eligible cases that were completed interviews (outcome = 201)

Equation =
201’s

Eligible Cases
× 100; (4)

• Partial rate: proportion of eligible cases that were sufficiently completed interviews (outcome = 203)

Equation =
203’s

Eligible Cases
× 100; (5)

• Therefore, Response rate = Interview rate + Partial rate.

In the simulation study, the outcome frequency distribution needs to be adjusted and taken as the input

of the simulation model. Some of the 28 outcomes can be determined when the FR visits only once regardless

of the result of contact or no-contact. These outcomes are called one-visit outcomes. We have identified the

following outcomes as the one-visit outcomes:
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226 (vacant, nonseasonal) 240 (demolished)
228 (to be demolished) 241 (house-trailer mover)
229 (under construction) 242 (out of segment bounds)
230 (temporarily business or storage) 243 (converted permanent business/storage)
231 (unoccupied site) 244 (merged)
232 (construction not started) 245 (condemned)
233 (other-Type B) 247 (other-Type C)
235 (vacant, seasonal) 248 (spawned in error)

The other outcomes, except 216 (no one home), are determined as soon as the respondent is contacted. These

outcomes are called contact outcomes and 216 is called no-contact outcome.

In the simulation model, we will assume a zero probability of the no-contact outcome. The final percentage

of the no-contact outcome is determined by the contact/no-contact distribution discussed in Section 4.3.

Therefore, We need to adjust the frequency distribution of the contact outcomes and make the no-contact

outcome 0.0% for the simulation modeling. We will keep the one-visit outcome distribution unchanged and

assume that the percentage of the no-contact outcome is redistributed according to the ditribution of the

contact outcomes. Let V be the index set of the one-visit outcomes and U be the other outcomes. Also, let

fi be the percentage of the ith outcome, then∑
i

fi = 100.0

and the adjusted frequency distribution of the outcomes is computed as following:

gi =

⎧⎪⎪⎨
⎪⎪⎩
0.0, if i = 5;

fi ×
∑

j∈U fj∑
k∈U−{5} fk

, if i ∈ U − {5};
fi, if i ∈ V.

Table 1 also shows the 2004 adjusted frequency distribution by outcome at the national level. In the table, the

one-visit outcomes are marked with an asterisk(*). The final percentage of 1.72% for code 216 (no one home)

is determined by the distribution of contact/no-contact. Each of the 12 regional offices (and eventually, each

PSU) will be handled in the same way. Table 2 shows the 2004 Quarter 2 (Q2) freuqency distribution and its

adjusted frequency distribution by outcome for the Denver Regional Office.

4.2 Interview Length Distributions of Outcomes in NHIS

In this section, we will try to decide what general family of distributions appears to be appropriate for

each outcome’s interview length. The methods we use for this purpose are scatter diagrams and probability

plots. A scatter diagram is constructed for assessing the independence of observations and was described

earlier in Section 4. A probability plot is a graphical comparison of an estimate of the distribution function of

the interview length data X1, X2, . . . , Xn with the distribution function of one of the standard distributions

being considered as a model for the data. Before we perform the input analysis using the probability plots and

other methods, we would like to remove the outliers from the observed data. Some of the data are not good

and considered as outliers for a variety of reasons. One of the reasons is that some of the observed data gave

much longer time than the actual interview time because the computer was kept running without “the end of

interview” being entered at the end of interview. Another is that some of the interview lengths are negative

values.

There are m = 30992 observations for outcome 201 (completed interview) of NHIS in 2004. To remove the

outliers, we have truncated the observations that are beyond two standard deviations from the mean. The

truncation of removing the outliers has been repeated 4 times (k = 4 iterations) for outcome 201. The final

number of observations used in the input analysis for outcome 201 is n = 26741. Table 3 shows the numbers of

m, k, and n for each of the outcomes. The entries with “−” indicate that there was no interview time needed

even though some observations were still captured.
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Table 2: 2004 Q2 NHIS Frequency Distribution by Outcome (Denver RO)

Original Adjusted
i Outcome Freq. %(fi) Cumul. %(gi) Cumul.

1 201 (completed interview) 512 46.80 46.80 47.10 47.10
2 203 (sufficient partial interview, no follow-up) 70 6.40 53.20 6.44 53.54

Type A

3 213 (language problem) 0 0.00 53.20 0.00 53.54
4 215 (insufficient partial interview) 3 0.27 53.47 0.28 53.81
5 216 (no one home, repeated calls) 6 0.55 54.02 0.00 53.81
6 217 (temporarily absent, no follow-up) 8 0.73 54.75 0.74 54.55
7 218 (refused) 28 2.56 57.31 2.58 57.13
8 219 (other-Type A) 5 0.46 57.77 0.46 57.59

Type B

9 223 (all arm force) 4 0.37 58.14 0.37 57.95
10 225 (all URE) 32 2.93 61.06 2.94 60.90
11 226 (vacant, nonseasonal)* 86 7.86 68.92 7.86 68.76
12 228 (to be demolished)* 2 0.18 69.10 0.18 68.94
13 229 (under construction)* 5 0.46 69.56 0.46 69.40
14 230 (temporarily business or storage)* 9 0.82 70.38 0.82 70.22
15 231 (unoccupied site)* 2 0.18 70.57 0.18 70.40
16 232 (construction not started)* 2 0.18 70.75 0.18 70.59
17 233 (other-Type B)* 0 0.00 70.75 0.00 70.59
18 235 (vacant, seasonal)* 17 1.55 72.30 1.55 72.14
19 236 (screened out) 198 18.10 90.40 18.21 90.35

Type C: unit is not there

20 240 (demolished)* 5 0.46 90.86 0.46 90.81
21 241 (house-trailer mover)* 4 0.37 91.22 0.37 91.18
22 242 (out of segment bounds)* 0 0.00 91.22 0.00 91.18
23 243 (converted permanent business/storage)* 2 0.18 91.41 0.18 91.36
24 244 (merged)* 1 0.09 91.50 0.09 91.45
25 245 (condemned)* 2 0.18 91.68 0.18 91.63
26 246 (built after 4/1/1990) 83 7.59 99.27 7.64 99.27
27 247 (other-Type C)* 4 0.37 99.63 0.37 99.63
28 248 (spawned in error)* 4 0.37 100.00 0.37 100.00

Total 1094 100.00 100.00 100.00 100.00

4.2.1 Assessing Independence of Interview Length of Outcomes in NHIS

A lag k correlation plot and a scatter diagram could have been constructed to assess the independence

of the interview lengths. However, the interviews were conducted by different interviewers (FRs) at different

households and at different time as described earlier in Section 4. Therefore, it is reasonable to assume that

the interview lengths conducted by different FRs at the sample households for all outcomes are independent

samples.

4.2.2 Probability Plots of Interview Length of Outcomes in NHIS

Let X(i) be the smallest of the Xj ’s, called the ith order statistic of the n Xj ’s. The distribution function

F of a random variable X is defined so that for any x, F (x) = P{X ≤ x}. If X has the same distribution as

the Xj data, a reasonable approximation to F (x) is thus the proportion of the Xj ’s that are less than or equal

to x. Therefore, we might want to define an empirical distribution function F̃n(x) so that F̃n(X(i)) = i/n, or

F̃n(X(i)) = (i− 0.5)/n to avoid an empirical distribution function that is equal to 1 for a finite value of x.

For 0 < q < 1, the q quantile of a distribution F is a number xq that satisfies F (xq) = q. Thus, if F−1

denotes the inverse of the distribution function F , a formula for the q quantile of F is xq = F−1(q), where

F−1 exists if F is continuous and strictly increasing. If F and G are two distribution functions, it is clear

that F = G if and only if each of the quantiles of F is the same as the corresponding quantile of G. Thus, if
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Table 3: Number of Observations Used for Input Analysis

outcome m k n outcome m k n
201 30992 4 26741 231 226 − −
203 5916 4 5055 232 41 − −
213 83 2 78 233 138 − −
215 519 3 460 235 1295 − −
216 1224 − − 236 13813 3 12470

217 312 − − 240 236 − −
218 2604 − − 241 193 − −
219 570 3 496 242 137 − −
223 122 3 101 243 332 − −
225 934 3 866 244 170 − −
226 6330 − − 245 26 − −
228 243 − − 246 3418 3 3120

229 245 − − 247 261 − −
230 203 − − 248 537 − −

xq and yq are the q quantiles of F and G, respectively, a plot of the points (xq, yq) for various values of q will

produce points along a straight line having slope 1 (a 45◦ line) and passing thru the origin, since xq = yq for

all q. Furthermore, if the random variables corresponding to F and G differ only in location and scale, then

for some real numbers γ and β > 0, we have G(x) = F ((x− γ)/β) for all x. In this case, it is easy to see that

for all q, yq = γ+ βxq, so that a plot of the points (xq, yq) produces a straight line of points which has a slope

not necessarily 1 and which need not pass thru the origin. Thus, distributions having the same shape (but

which may differ in location and scale) have quantiles which are linearly related. A plot of pairs of quantiles

such as (xq , yq) is called probability plot, or Q-Q plot.

Probability plots provide a way of assessing whether the empirical distribution function F̃n, defined at the

X(i) points, has the same shape as a distribution function from one of the theoretical families (see [12] for

more details). For survey interview length, suppose that we are considering a particular distribution form

and that if this distribution has shape parameters, they have already been estimated from the data. Let the

resulting distribution function be denoted by F , which represents a trial hypothesized distribution shape, with

unspecified location and scale. We would like to compare F̃n with F , and we can do so by a (Q-Q) probability

plot of the quantile pairs for q = (i − 0.5)/n for i = 1, 2, . . . , n, as follows. By definition, the (i − 0.5)/n

quantile of F̃n is precisely X(i). The (i − 0.5)/n quantile of F is simply F−1((i − 0.5)/n). Thus, we plot the

points (
X(i), F

−1

(
i− 0.5

n

))

for i = 1, 2, . . . , n, and if the resulting points appear to lie along a straight line, we have informal confirmation

that, except for adjustments in location and scale, F is a good distribution function for our interview length

data.

Figure 1 shows the beta distribution probability plot for interview length of outcome 201. The plot indeed

appears to have a straight line, supporting the beta distribution. To provide an idea of what a probability

might look like when an inappropriate distribution is hypothesized, we made probability plots for the Weibull

and gamma distributions. The resulting Weibull probability plot in Figure 2 displays obvious nonlinearity at

the upper end while the gamma plot in Figure 3 displays nonlinearity at both ends.
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Figure 1: The Beta Probability Plot for Interview Length of Outcome 201.

4.2.3 Estimation of Parameters for Interview Length of Outcomes in NHIS

After a family of distributions has been hypothesized, we must specify the value(s) of its parameter(s)

in order to determine completely the distribution from which we shall sample during the simulation. Our

hypothesized distribution is a beta distribution, Beta(α, β, θ, λ), where α and β are the shape parameters, θ is

the threshold parameter, and λ is the scale parameter. For both distributions, α > 0 is the shape parameter,

θ is the threshold parameter, and λ > 0 is the scale parameter.

Table 4: Parameter Estimates for the Three Distributions and Outcome 201 Data

Parameters
Distribution Range Shape(α) Shape(β) Threhold(θ) Scale(λ)

Beta(α, β, θ, λ) θ < x < θ + λ 2.127 2.549 8.796 79.258
Weibull(α, θ, λ) x > θ 2.484 6.566 43.030
Gamma(α, θ, λ) x > θ 17.392 -24.802 3.997

The parameter estimates using the maximum-likelihood estimators (MLEs) for the three distributions and

the interview lengths of outcome 201 are given in Table 4. Other distributions used for testing other outcome

data are exponential and lognormal distributions.

4.2.4 Goodness-of-Fit Tests for Interview Length of Outcomes in NHIS

After we have hypothesized a distribution form for our data and have estimated its parameters, we must

examine whether the fitted distribution is in agreement with our observed data X1, X2, . . . , Xn. If F (x) is the

distribution function of the fitted distribution, a hypothesis test is addressed with a null hypotheses of

H0 : The Xi’s are IID random variables with distribution function F (x) (6)

This is called a goodness-of-fit test since it tests how well the fitted distribution “fits” the observed data. We
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Figure 2: The Weibull Probability Plot for Interview Length of Outcome 201.

Figure 3: The Gamma Probability Plot for Interview Length of Outcome 201.
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used four goodness-offit test methods to perform the tests. The four methods used are (1) Chi-Square Tests,

(2) Kolmogorov-Smirnov Tests, (3) Cramér-von Mises Tests, and (4) Anderson-Darling Tests.

Figure 4 shows the histogram of the interview lengths for outcome 201. Table 5 show the results of the four

goodness-of-tests, indicating that the ouctome 201 interview lengths do not fit the three distributions tested.

In the simulation, we will use an emprical distribution from which the samples are drawn.

Figure 4: The Histogram Plot for Interview Length of Outcome 201 (Beta, Weibull, and Gamma Distributions).

4.2.5 Data Analysis for Interview Lengths of Other Outcomes in NHIS

The scatter diagrams, not shown, for the interview lengths of outcomes 203, 213, 215, 219, 223, 225, 236,

and 246 indicate that it is reasonable to assume that they are independent samples.

We also performed the Q-Q plots and goodness-of-fit tests for each of those outcome data. Table 6 shows

the results of the goodness-of-fit tests of all the outcome data analyzed.

The fitted distributions in Table 6 will be used for the random variate generation described in Section 5.2.

4.3 Analysis of Contact Histories with NHIS

In this section, we describe the analysis of the contact attempt history data collected with the 2004 NHIS.

Dahlhamer, Simile, Stussman, and Taylor [6] give a detailed analysis of this CHI (Contact History Instrument)

data set. They found weekday evenings and weekends to be the best times to make contact with households

in the NHIS, at least for the first four attempts (where prior attempts were no-contacts). In their work, for

all analyses involving time of contact attempt, mornings are defined as 12:00 AM to 11:59 AM, afternoons as

12:00 PM to 4:49 PM, and evenings as 5:00 PM to 11:59 PM. The input modeling of the simulation is based

on their work. However, we are only interested in the contact/no-contact distributions based on the time by

the hour of a day and the days of a week. We divide a day by the hour because the starting time of each day

by the FRs will be a decision varible when a sensitivity analysis is performed.

There are 197607 observations from the 2004 CHI data sets. More than 78% of them (154741 observations)

are personal visits, the other 22% (42866 observations) are telephone calls. In our simulation model, we assume
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Table 5: Results of the Four Goodness of Fit Tests for Outcome 201 Data

Distribution Test
Test Statistic DF p Value Result

Beta(α, β, θ, λ)
Chi-Square χ2 = 645.802862 47 Pr(p > χ2) < 0.001 rejected H0

Kolmogorov-Smirnov D = 0.024418 Pr(p > D) < 0.001 rejected H0

Cramér-von Mises W 2 = 5.205604 Pr(p > W 2) < 0.001 rejected H0

Anderson-Darling A2 = 31.448265 Pr(p > A2) < 0.001 rejected H0

Weibull(α, θ, λ)
Chi-Square χ2 = 687.104887 47 Pr(p > χ2) < 0.001 rejected H0

Kolmogorov-Smirnov D = 0.019136 Pr(p > D) < 0.001 rejected H0

Cramér-von Mises W 2 = 2.413048 Pr(p > W 2) < 0.001 rejected H0

Anderson-Darling A2 = 21.969588 Pr(p > A2) < 0.001 rejected H0

Gamma(α, θ, λ)
Chi-Square χ2 = 834.565941 47 Pr(p > χ2) < 0.001 rejected H0

Kolmogorov-Smirnov D = 0.022515 Pr(p > D) < 0.001 rejected H0

Cramér-von Mises W 2 = 4.223140 Pr(p > W 2) < 0.001 rejected H0

Anderson-Darling A2 = 36.594500 Pr(p > A2) < 0.001 rejected H0

Table 6: Results of the Goodness of Fit Tests for Outcome Data Tested

Outcome Sample Distribution(s) Distribution Alternative
Size (n) Fitted Will Be Used in Distribution(s)

(Not Rejected) Simulation Runs Will Be Used

201 26741 None Empirical Beta(α, β, θ, λ)
=(2.127,2.549,8.796,79.258)

203 5055 None Empirical Beta(α, β, θ, λ)
=(1.988,3.233,0.969,81.207)

213 78 Weibull Weibull(α, θ, λ) Empirical
Exponential =(1.000,0.367,2.064) Exponential(θ, λ)
Gamma =(0.340,2.090)

Gamma(α, θ, λ)
=(0.913,0.367,2.261)

215 460 Gamma Gamma(α, θ, λ) Exponential(θ, λ)
Exponential =(1.052,1.298,15.257) =(1.265,16.076)

Weibull Weibull(α, θ, λ)
=(1.016,1.299,16.148)

219 496 Gamma Gamma(α, θ, λ) Weibull(α, θ, λ)
Weibull =(1.017,0.233,2.965) =(1.000,0.233,3.014)

223 101 Gamma Gamma(α, θ, λ) Weibull(α, θ, λ)
Weibull =(1.708,0.462,2.195) =(1.328,0.531,3.999)
Beta Beta(α, β, θ, λ)

Lognormal =(1.339,6.897,0.533,22.667)
Lognormal(ζ, θ, λ)
=(1.319,-0.288,0.623)

225 866 Lognormal Lognormal(ζ, θ, λ) Weibull(α, θ, λ)
=(0.802,0.194,0.982) =(1.031,0.267,3.512)

236 12470 None Empirical Lognormal(ζ, θ, λ)
=(1.538,-0.086,0.596)

246 3120 Lognormal Lognormal(ζ, θ, λ) Gamma(α, θ, λ)
=(0.677,-0.054,0.825) =(1.302,0.166,1.910)
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that there are no telephone calls in the field operations activities. In reality, phone calls may be used for follow-

up interviews after the first contact personal visit. We will add the activities of phone calls into the model in

the future.

Table 7: The Frequency Distributions of Contact/No-Contact

Hour Sun(%) Mon(%) Tue(%) Wed(%) Thur(%) Fri(%) Sat(%)
No-Contact 00-01 66.67 34.38 64.41 62.14 54.44 58.90 55.56
Contact 33.33 65.62 35.59 37.86 45.56 41.10 44.44
No-Contact 01-02 64.52 39.13 47.37 63.92 51.65 50.70 52.17
Contact 35.48 60.87 52.63 36.08 48.35 49.30 47.83
No-Contact 02-03 66.67 50.00 68.18 59.34 71.74 61.82 77.78
Contact 33.33 50.00 31.82 40.66 28.26 38.18 22.22
No-Contact 03-04 50.00 57.89 69.23 48.15 34.88 58.62 42.86
Contact 50.00 42.11 30.77 51.85 65.12 41.38 57.14
No-Contact 04-05 44.44 33.33 70.27 71.88 37.50 63.16 57.14
Contact 55.56 66.67 29.73 28.12 62.50 36.84 42.86
No-Contact 05-06 88.89 50.00 58.82 50.00 37.50 29.41 0.00
Contact 11.11 50.00 41.18 50.00 62.50 70.59 100.00
No-Contact 06-07 58.33 71.43 60.87 65.99 49.28 57.41 53.85
Contact 41.67 28.57 39.13 34.01 50.72 42.59 46.15
No-Contact 07-08 29.41 53.57 51.38 65.53 54.17 53.15 61.54
Contact 70.59 46.43 48.62 34.47 45.83 46.85 38.46
No-Contact 08-09 66.04 38.46 49.19 44.99 45.27 42.15 56.69
Contact 33.96 61.54 50.81 55.01 54.73 57.85 43.31
No-Contact 09-10 48.04 54.49 44.97 46.30 51.34 46.68 41.18
Contact 51.96 45.51 55.03 53.70 48.66 53.32 58.82
No-Contact 10-11 51.12 47.15 48.52 47.16 46.08 47.14 46.42
Contact 48.88 52.85 51.48 52.84 53.92 52.86 53.58
No-Contact 11-12 50.89 49.23 51.45 50.85 46.61 50.16 43.75
Contact 49.11 50.77 48.55 49.15 53.39 49.84 56.25
No-Contact 12-13 48.04 49.48 49.15 52.27 47.70 50.81 45.44
Contact 51.96 50.52 50.85 47.73 52.30 49.19 54.56
No-Contact 13-14 47.10 49.37 47.47 48.51 51.00 47.45 46.39
Contact 52.90 50.63 52.53 51.49 49.00 52.55 53.61
No-Contact 14-15 46.39 49.29 49.98 46.23 50.06 46.27 45.40
Contact 53.61 50.71 50.02 53.77 49.94 53.73 54.60
No-Contact 15-16 49.53 46.95 46.83 46.98 46.88 45.10 45.13
Contact 50.47 53.05 53.17 53.02 53.12 54.90 54.87
No-Contact 16-17 47.22 43.46 44.52 42.90 42.89 45.44 47.06
Contact 52.78 56.54 55.48 57.10 57.11 54.56 52.94
No-Contact 17-18 45.60 42.70 42.88 39.82 41.91 45.24 49.57
Contact 54.40 57.30 57.12 60.18 58.09 54.76 50.43
No-Contact 18-19 47.90 42.59 40.20 41.91 42.92 46.42 51.58
Contact 52.10 57.41 59.80 58.09 57.08 53.58 48.42
No-Contact 19-20 50.07 47.26 46.13 44.50 44.79 48.79 50.94
Contact 49.93 52.74 53.87 55.50 55.21 51.21 49.06
No-Contact 20-21 47.96 49.06 49.24 48.34 49.77 52.41 59.21
Contact 52.04 50.94 50.76 51.66 50.23 47.59 40.79
No-Contact 21-22 52.97 50.73 49.40 52.77 51.70 58.70 54.18
Contact 47.03 49.27 50.60 47.23 48.30 41.30 45.82
No-Contact 22-23 46.67 56.52 55.74 55.74 56.03 60.00 61.06
Contact 53.33 43.48 44.26 44.26 43.97 40.00 38.94
No-Contact 23-24 53.63 57.84 58.36 52.09 54.44 65.71 58.76
Contact 46.37 42.16 41.64 47.91 45.56 34.29 41.24

Table 7 shows the personal visit frequency distributions of contact/no-contact based on the time of a day

and the day of a week. In the table, the column of “Hour” shows the local time of the PSUs that the FRs

visit the households. It shows that the best times to make contact with households in the NHIS are between

1:00 PM to 8:00 PM on weekdays, 9:00 AM to 5:00 PM on Saturdays, and 12:00 PM to 7:00 PM on Sundays.

The table also indicates that the personal visits occurred at any time of a day.
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5 Random Number and Random Variate Generations

A random number is a single observation of the continuous uniform distribution on the interval (0, 1).

The random number is then transformed as needed to simulate a random variate from different probability

distributions, such as the normal, exponential, Poisson, binomial, Weibull, gamma, lognormal, etc. Random

number generation is a computational procedure designed to generate a sequence of numbers. In contrast,

random variate generation always refers to the generation of variates whose probability distribution is usually

different from that of the uniform on the interval (0, 1).

5.1 Random Number Generation

Random numbers are the basic building blocks of simulation study. A random number generator is needed

to generate a sequence of independent and identically distributed (iid) U(0, 1) random variables. This sequence

of random numbers can be obtained thru deterministic algorithms with a solid mathematical basis. The

numbers produced by these algorithms are in fact not random at all. They should be called pseudorandom.

For more detailed description of pseudorandom number generations, see L’Ecuyer [13]. For simplification, the

term random is used instead of pseudorandom in the simulation contexts. A random number is always meant

a unform random variable, denoted by U(0, 1) (or rand() in our C++ code of the simulation model), whose

distribution function is

F (u) =

⎧⎪⎨
⎪⎩
0, if u ≤ 0;

u, if 0 < u < 1;

1, if u ≥ 1.

(7)

The algorithm we used to generate a sequence of random numbers is given in [4].

5.2 Random Variate Generation

In Section 5.1 the generation of (pseudo) random numbers was briefly discussed. In this section, we will

briefly discuss the random variate generations, see Cheng [5] for more detailed descriptions.

Random variate generation refers to the generation of variates whose probability distribution is different

from that of the uniform on the interval (0,1). The basic concept is to generate a random variable, X , whose

distribution function

F (x) = Pr(X ≤ x) −∞ < x < ∞ (8)

is assumed to be completely known, and which is different from that of Equation (7). A list of the random

variate generations used in our C++ code of the simulation model is given in [4].

6 Description of the Model

First, one thousand and fifty cases (households) are generated for the model. Ten field representatives

(FRs) are assumed, each of them is assigned a hundred and five cases and a PSU of 60 × 60 square miles 1.

Each of the one thousand and fifty cases is identified with its case number and its location (x, y) within its

own PSU, where 0 ≤ x ≤ 60 and 0 ≤ y ≤ 60. The values of x and y come from a uniform input distribution

between 0 and 60, U(0, 60) 2. The field office and/or the FRs’ homes can be located any where in a PSU of

3600 square miles. The simulation results are independent of the locations because the sample households are

randomly selected. In this simulation study, they are assumed to be located at (0, 0).

1The area of a PSU should not exceed 3,000 square miles except in cases where a single county exceeds the maximum area;
we use 3,600 square miles for our experimental runs

2All the uniform distributions described in this paper are discrete uniform distributions
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Each FR selects the first n cases (ascending order of case numbers of the incomplete cases) for each day’s

work. The value of n comes from a uniform input distribution U(8, 16). The FR has to visit each of the n

selected cases once for that day. The visiting order of the n cases is determined by the following:

1. The direct distance (dij) between each pair ((xi, yi) and (xj , yj)) of the n cases is calculated by

dij =
√
(xi − xj)2 + (yi − yj)2

2. A distance matrix of the n cases is formed, and therefore, a traveling network is formed with intercon-

nections between the nodes (cases).

3. Starting from the field office or FR’s home located at (0, 0) and ending at (0, 0), the FR visits each case

only once. This becomes a traveling salesman problem3.

4. The objective is to minimize the total distance traveled. Instead of this measure of distance, any other

measure of effectiveness may be substituted, such as time, likelihood of contact, and so on.

5. A branch and bound algorithm4 is used to determine the visiting order.

With the shortest path to visit each of the n households determined, each of the FRs is to visit each

household to conduct an interview for the survey. Table 8 shows the detailed information for conducting

interviews of 10 cases by FR 7 at day 5 for the simulation run with seed 23. The distances (determined by the

two locations (xi, yi) and (xj , yj)) of traveling to each of the households are given in column (4) of Table 8.

The average speed (mph) for the distances is a uniform distribution U(30, 40). The contact time (minutes) at

each household is a uniform distribution U(3, 7). At each household, it is either contacted or not contacted.

The contact/no-contact distributions are described in Table 7; no-contact if 0 and contact otherwise (potential

refusal is considered contact) so that the probability of contact depends on the time of a day and the day of

a week. If it is contacted, the interview length (minutes) is generated from the distributions given in Table 9

(also see Table 6) depending on the outcomes of the visits.

In Table 8, columns (1) and (2) list the n cases that need to be visited by the FR for the field operations.

The dashes after Today’s Seq. 10 and Case Number 738 are given to indicate the mileage and time needed

for the FR to drive back to the office at (0, 0). The first row shows that the FR drives 13 miles at average

speed of 32 mph to the first household (case number 750) arriving at minute 24, computed from columns (3)

and (4). Column (6) shows the simulated arrival time of the FR at each household. Column (7) shows the

time needed to make contact with the respondent in the household. Column (8) shows the clock time that

the interview began. Column (9) indicates that the number of visits to complete the interview so far. Column

(10), contact or no-contact, shows the binary values of contact = 1 and no-contact = 0. The values of column

(11) are time needed for the interview if there was a contact. Otherwise, there was no interview and the time

needed was 0. Finally, column (12) shows the clock time that the interview ended.

7 Preliminary Output Analysis Results

FRs are given 17 days, starting with the Monday of the assignment week for each month, to complete

each assignment. Therefore, the simulation model starts in a state of no personal visits for all cases assigned

3The traveling salesman problem can be stated as follows. A salesman, starting from a city, intends to visit each of (n-1) other
cities once and only once and return to the start. The problem is to determine the order in which he should visit the cities to
minimize the total distance traveled, assuming that the direct distances between all city pairs are known. The structure of the
problem shows that there are (n-1)! possible tours, of which one or more should be optimal

4The method of the branch and bound algorithm is to first identify a feasible solution and then to decompose the set of all
remaining feasible tours into smaller and smaller subsets. At each step of the decomposition, a lower bound on the length of
the current best tour is readily available. The bounds provide a guide for the partitioning of the subsets of feasible tours and
eventually for the identification of an optimal tour. When a tour with length less than or equal to the minimum lower bound
of all other tours is found, this intermediate solution becomes the best available. This process of bounding tours, eliminating
suboptimal alternatives, and branching to new (better) tours is the basis of the algorithm.
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Table 8: Field Representative 7 at Day 5 with seed 23

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Today’s
Seq.

Case
Number

Average
Speed

Distance
Time for
Traveling

Arrival
Time

Time to
Contact

Time
Interview
Begins

Current
Visit

Contact
Time for
Interview

Time
Interview

Ends

1 750 32 13 24 24 5 29 1 1 22 51
2 746 36 38 63 114 6 120 1 1 21 141
3 747 30 51 102 243 5 248 1 1 23 271
4 748 35 12 20 291 3 294 1 0 0 294
5 752 37 27 43 337 3 340 1 0 0 340
6 749 39 3 4 344 5 349 1 1 23 372
7 751 38 27 42 414 4 418 1 1 21 439
8 745 38 18 28 467 5 472 1 1 23 495
9 737 39 57 87 582 6 588 2 1 25 613
10 738 37 11 17 630 3 633 2 0 0 633
– — 31 81 156 789 – – – – — —

Total – – 338 586 – 45 – – 7 158 789

Table 9: Distributions Used in the Model for Interview Lengths

Outcome Probability Distribution Used in the Model

201 Beta(α, β, θ, λ) = Beta(2.127,2.549,8.796,79.258)

203 Beta(α, β, θ, λ) = Beta(1.988,3.233,0.969,81.207)

213 Weibull(α, θ, λ) = Weibull(1.000,0.367,2.064)

215 Gamma(α, θ, λ) = Gamma(1.052,1.298,15.257)

219 Gamma(α, θ, λ) = Gamma(1.017,0.233,2.965)

223 Gamma(α, θ, λ) = Gamma(1.708,0.462,2.195)

225 Lognormal(ζ, θ, λ) = Lognormal(0.802,0.194,0.982)

236 Lognormal(ζ, θ, λ) = Lognormal(1.538,-0.086,0.596)

246 Lognormal(ζ, θ, λ) = Lognormal(0.677,-0.054,0.825)

each month. We will assume the simulation of field operations is the type of finite-horizon simulations. The

estimations of the performance measures via independent replications will be used for the output analysis.

For the one thousand observations, a point estimate and the 95% confidence interval estimation of the

mean and variance of the performance measures, such as response rate, average number of visits per case, and

cost are analyzed using the sample mean, the sample variance, and the confidence interval with k = 1000 and

α = 0.95. Table 10 shows the estimates and their 95% confidence intervals of the aforementioned performance

measures.

Table 10: The Estimation of the Cost, Response Rate, and Number of Personal Visits

Performance Mean Variance

Measure Estimate 95% Conf. Limits Estimate 95% Conf. Limits

Cost ($) 25,475 25,454 25,495 111870 102673 122367

Response Rate (%) 86.04 85.94 86.15 3.02 2.77 3.30

Average # of

Personal Visits
1.74188 1.74020 1.74356 0.0007356 0.0006751 0.0008046

Next, we show an example of how the perfromance measures would change when we change some of the

parameters. Those parameters are controllable:

1. The starting time of each day by the field representatives: we assume that all the FRs start at 10:00

AM, 12:00 noon, or 3:00 PM. These parameter settings are based on the contact/no-contact distributions
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given in Table 7. We repeat part of the distributions in Table 11. Note that we consider Potential Refusal

as Contact. Table 11 shows that the overall contact probability (55.32%) is higher during the hours of

3:00 to 8:00 PM than during the hours of 10:00 AM to 3:00 PM.

Table 11: The Selected Frequency Distributions of Contact/No-Contact

Hours Sun(%) Mon(%) Tue(%) Wed(%) Thur(%) Fri(%) Sat(%) Overall(%)

No-Contact 10:00-12:00 50.98 48.46 50.25 49.33 46.38 48.91 44.83 48.12

Contact 49.02 51.54 49.75 50.67 53.62 51.09 55.17 51.88

No-Contact 12:00-15:00 47.03 49.37 48.90 48.78 49.69 48.04 45.75 48.36

Contact 52.97 50.63 51.10 51.22 50.31 51.96 54.25 51.64

No-Contact 15:00-20:00 48.05 44.50 43.95 43.06 43.74 46.14 48.23 44.68

Contact 51.95 55.50 56.05 56.94 56.26 53.86 51.77 55.32

2. The number of field representatives: we increase the number of FRs from 10 to 15 and keep the same

number of cases assigned at 1050. The covered geographical area is changed from 3,600 square miles

to 2,401 square miles. The number of cases assigned to each FR is also changed from 105 to 70. The

number of working days is reduced from 17 to 11.

Table 12 shows the nine parameter settings discussed above. For each parameter setting, we generate 1000

Table 12: The Nine Parameter Settings for the Experiments

Setting Starting Time # of FRs Days Area FR-Days Adjusted Days

1 10:00 10 17 3600 170 17.00

2 12:00 10 17 3600 170 17.00

3 15:00 10 17 3600 170 17.00

4 10:00 15 11 2401 165 11.33

5 12:00 15 11 2401 165 11.33

6 15:00 15 11 2401 165 11.33

7 10:00 15 17 2401 255 11.33

8 12:00 15 17 2401 255 11.33

9 15:00 15 17 2401 255 11.33

observations, the estimates of the performance measures are given in Table 13. Table 13 also shows the

Table 13: The Estimates of the Performance Measures of the Nine Parameter Settings

Adjusted to 170 FR-Days

Setting Cost
Response

Rate(RR)

Average

Visits
Cost

Response

Rate(RR)

Average

Visits

Cost

Savings

1 $25,375 86.19% 1.72 $25,375 86.19% 1.72 --

2 $25,238 86.86% 1.71 $25,238 86.86% 1.71 --

3 $25,475 86.04% 1.74 $25,475 86.04% 1.74 --

4 $20,722 82.23% 1.68 $21,349 84.72% 1.73 15.86%

5 $20.575 83.50% 1.66 $21,199 86.03% 1.71 16.00%

6 $20,589 83.88% 1.67 $21,213 86.42% 1.72 16.73%

7 $24,545 89.93% 1.78 RR gain 3.74% -- 3.27%

8 $24.085 89.96% 1.75 RR gain 3.10% -- 4.57%

9 $23,926 89.98% 1.75 RR gain 3.94% -- 6.08%

adjustments of the performance measures to 170 FR-Days for the parameter settings of 4, 5, and 6. By visual

inspection, there is no significant difference among the parameter settings of starting time for each day for
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all three performance measures. However, there is cost saving if more field representatives are assigned to

the 1050 cases as indicated in Table 13 that the settings of 4, 5, and 6 have potential cost savings of 15.86%,

16.00%, and 16.73% over the settings of 1, 2, and 3, respectively. We also examine where the cost saving is

coming from. Table 14 shows the cost estimates with seed 169001 for the parameter settings 3 and 6, where five

more FRs are assigned to the 1050 cases. The last row labeled Adjusted is the adjustments to 170 FR-Days

for parameter setting 6. The total traveling distance is 35,012 miles for parameter setting 3 and 27,922 miles

for parameter setting 6. It is a saving of 20.25%. Therefore, a smaller PSU area would reduce the traveling

time for the FRs, meaning less time on the roads and more time knocking on the doors.

Parameter settings 7, 8, and 9 are used to examine the effect of the response rate if we would like the

FRs to work 17 days instead of 11 days. The results indicate that these three parameter settings have cost

savings of 3.27%, 4.57%, and 6.08% over parameter settings 1 to 3, respectively. The response rates also have

increases of 3.74%, 3.10%, and 3.94%, respectively. These are strong evidences that reducing the cost while

increasing the response rate is feasible for the field operations if the parameters are properly set.

Table 14: The Cost Estimates of the Replication with Seed 169001

FR
Total time

(hours)

Wages

($)

Total distance

(miles)

Mileage

($)

Total cost

($)

Parameter Setting 3

0 129.35 1293.50 3304 1156.40 2449.90

1 135.40 1354.00 3569 1249.15 2603.15

2 138.95 1389.50 3691 1291.85 2681.35

3 136.83 1368.33 3710 1298.50 2666.83

4 127.33 1273.33 3229 1130.15 2403.48

5 130.67 1306.67 3255 1139.25 2445.92

6 134.82 1348.17 3412 1194.20 2542.37

7 133.17 1331.67 3503 1226.05 2557.72

8 132.15 1321.50 3448 1206.80 2528.30

9 150.70 1507.00 3891 1361.85 2868.85

Total 1349.37 13493.67 35012 12254.20 25747.87

Parameter Setting 6

0 71.83 718.33 1747 611.45 1329.78

1 73.42 734.17 1803 631.05 1365.22

2 71.75 717.50 1772 620.20 1337.70

3 73.85 738.50 1885 659.75 1398.25

4 71.38 713.83 1701 595.35 1309.18

5 73.05 730.50 1835 642.25 1372.75

6 77.12 771.17 1865 652.75 1423.92

7 73.37 733.67 1801 630.35 1364.02

8 79.25 792.50 1918 671.30 1463.80

9 69.75 697.50 1673 585.55 1283.05

10 79.18 791.83 1926 674.10 1465.93

11 75.90 759.00 1861 651.35 1410.35

12 69.17 691.67 1713 599.55 1291.22

13 70.08 700.83 1706 597.10 1297.93

14 78.42 784.17 1895 663.25 1447.42

Total 1107.52 11075.17 27101 9485.35 20560.52

Adjusted 1141.08 11410.78 27922 9772.78 21183.57

8 Conclusion and Summary

In conclusion, we have shown that the simulation model can be used for optimizing the field operations

by setting the controllable parameters before a decision is made and implemented. The cost savings might be

enormous as shown in the example (about 16%) of Section 7 and would not be at the expense of the response
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rate. If more working days are needed by FRs, a cost saving with higher response rate is also feasible.

Figure 5 shows how the optimization of field operations cost can be achieved. In the figure, the solid line

shows the direct cost of FRs vs. the number of FRs5. The preliminary result indicates that the direct cost

is a decreasing function of the number of FRs. If the hiring and training cost (or the overhead) of FRs is an

increasing function of the number of FRs, shown in Figure 5 as a dot line, then the minimum total cost can

be located by examining the dash line, which is the sum of the solid and dot lines, of the figure.

Figure 5: Optimization of Field Operations Cost.

In summary, the following preliminary tasks have been used for this study:

1. Model conceptulization: The model will begin simply and grow until a model of appropriate complexity

has been developed.

2. Data collection: A data set for each variable from the NHIS is collected with help from Demographic

Surveys Division.

3. Input data analysis: Determine the distribution function of the data set collected for each variable.

4. Model translation: The conceptual model constructed in Step 1 is coded into a computer-recognizable

form, an operational model.

5. Verification and validation: Verification concerns the operational model. Is it performing properly?

Validation is the determination that the conceptual model is an accurate representation of the field

operations. The process of verification and validation is an iterative one. New details will be added to

the model and new results are presented to Field Division (or field operations experts). If the results are

5We use 501 as the total number of FRs in the figure for illustration purpose only, it is not the actual number of FRs for the
NHIS.
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not sufficiently accurate, Field Division/experts identify other details that should be included. These

details are added, and the cycle starts anew. At some point, we “must” agree that the model is “close

enough” to provide useful information. The agreement can be based on the simulation output data and

the Field Division historical data.

6. Experimental design: For each scenario that is to be simulated, decisions need to be made concerning

the length of the simulation run, the number of runs (also called replications), and the manner of

initialization, as required.

7. Production runs and output analysis: Production runs and their subsequent output analysis are used to

estimate the performance measures for the scenario that are being simulated.

8. Senitivity and feasibility study.

9. Documentation and reporting.

The simulation model will be modified according to the aforementioned Step 5 to make the model valid for a

better tool of decision making.

As mentioned in Section 6, the simulation model described in this paper is for the simplified field operations

of surveys. For example, we explored the possible simulation models at the national level. However, other

geographic attributes such as region and MSA (Metropolitan Statistical Area) status should be explored in

the future. These attributes have been shown to be a measure associated with contact [7]. Other future work

that should be included is listed as following:

1. physical impediments, at-home patterns of households as described in Section 4.3;

2. interviewer strategies that influence contact such as advance letters and notices of visit [8] and telephone

interviews after the first contact;

3. multiple visits of completed interviews (outcome 201), a completed interview may need several visits of

the same household in which the interview lengths of the visits may be correlated;

4. a sample household may have several unrelated persons living in the same house, it is required by NHIS

to interview each one of them;

5. classification of interviewers (field representatives or supervisory field representatives) based on their

experience and training;

6. GPS with live traffic used by field representatives to cut traveling time between sample households.
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