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1. Background 

Residual heterogeneity (variation in capture probabilities) is known to produce bias in the dual-system estimates 

which have been used to estimate census coverage in U.S. Censuses since 1980. Triple-system estimation (TSE) 

using an administrative records list as a third source along with the census and post-enumeration survey (PES) has 

the potential to produce estimates with less bias.  

Griffin (2013) presented and evaluated potential statistical methods for estimation of net census undercount using 

three systems for obtaining population information: (1) a decennial census; (2) an independent enumeration of the 

population; and (3) administrative records.  This paper was prepared for the 2012 American Statistical Association 

Hard to Reach Conference. Results showed that three sets of capture attempts can produce more accurate estimates 

than two capture attempts. However, the paper noted that increased matching error, which was ignored, seems likely 

going from the two capture attempts necessary for dual-system estimation (DSE) to the three capture attempts 

necessary for TSE. For two attempts at capture, there are only four cells in a 22  cross classification of capture 

status and given the marginal counts of the total for each of the attempts, matching is only necessary to obtain the 

cell representing captured in both attempts. For three attempts, there are eight cells in a 222   cross 

classification of capture status. Obtaining all these counts from a complex matching operation may be error prone. 

This paper provides a simulation to investigate the effect of matching error on DSE as well as on some of the 

potential triple-system estimates possible if an administrative records system is added to a census followed by a 

PES.  

The incomplete 2
3
 table of counts for TSE can be divided into one complete 22  sub-table and one incomplete 

22  sub-table. The additional source from administrative records provides data with which to evaluate the 

previously un-testable assumption of independence between the census and the PES. Direct evidence is available in 

the triple-system tables for odds ratios in 22  sub-tables formed by restricting consideration to cases observed in 

the administrative records source. In this case, complete information is available for all four cells defined by capture 

or not in the census and PES. This additional information is used to formulate the triple-system estimates using an 

assortment of model assumptions.  

It is assumed that all N individuals in the population are exposed to possible inclusion in all three sources. In 

practice, sampling is necessary for the PES and possibly the administrative list (due to the necessity of follow-up for 

unresolved match status).  In addition, erroneous inclusions including within-list duplicates have been removed from 

all lists. The model assumes autonomous independence, which means that the census list, the PES list and the 

administrative list are created as a result of N mutually independent trials from one person to the next (all persons 

are captured independently of all other persons).  



 
 

Section 2 provides a matching error model for DSE and section 3 expands this to a matching error model applicable 

for TSE. Section 4 describes three alternative estimators for TSE that are compared with each other and with DSE in 

the simulations. Sections 5 and 6 give the details for creating the simulated populations and replication of the 

simulations. This is followed by sections 7, 8, and 9 providing results, analysis, summary, and conclusions.   

1.  A Matching Error Model for Dual-System Estimation 

Biemer (1988) presents a model for the matching error associated with DSE .  Here we present  portions of Biemer’s 

model as background for the TSE matching error model.  The motivation is that although a TSE may reduce model 

errors inherent in DSE, the additional matching error associated with TSE may counter balance this gain and result 

in an increase in total error.  

For DSE, there are two list sources, a census and an independent PES. Table 1 shows the observed counts after 

matching persons from the PES to the census to obtain X11. 

Table 1:  Observed Counts after Matching for Dual-System Estimation 

  

        In PES 

             1 

 

     Out of PES 

             0 

 

     In Census 

            1 

         X11          X1+ - X11          X1+ = NC 

   Out of Census 

            0 

     X+1 - X11                

      X+1 = NP  N 

 

Matching error has no effect on the census count, NC , or the PES count, NP. 

The true population count, N, is unknown.  For all persons in the PES, define a 1 or 0 indicator, y, as 1 for matched 

and 0 for not matched to the census. In addition, define a 1 or 0 indicator, z, as 1 for truly in the census and 0 for 

truly missed in the census. 

Assume that matching is independent from person to person and define matching error for person j as follows:  

 }0|1{ jj zyP  (probability of false positive) 

 }1|0{ jj zyP  (probability of false negative) 

These error probabilities are assumed to be homogeneous across persons enumerated in the PES. 
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11p̂  is the estimate of 11p using the results of the matching operation. 

Then the dual-system estimate, which assumes independence between the PES and Census is given by 
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2. A Matching Error Model for Triple-System Estimation 

The three systems for obtaining population information for TSE used for this paper are (1) a decennial census; (2) an 

independent enumeration of the population; and (3) administrative records.  There are many possible estimators 

associated with TSE.  Griffin (2013) documents and uses ten estimators in a simulation. Seven of these estimators 

are motivated by hierarchical log linear models based on Fienberg (1972). Two of the estimators are based on 

suggestions from Zaslavsky and Wolfgang (1990 and 1993).  Other estimators are provided in Darrock et. al (1993).   

The observed counts after matching for a triple-system framework are shown in Table 2. 

Table 2:  Observed Counts after matching for Triple-System Estimation 

  

                In Administrative List 

 

               Out of Administrative List 

 

         In PES 

             1 

 

     Out of PES 

             0 

 

        In PES 

             1 

 

    Out of PES 

             0 

     In Census 

            1 

          X111           X101            X110            X100 

   Out of Census 

            0 

           X011           X001            X010        

 

The matching associated with TSE is much more complicated than that for DSE.  Several possible strategies can be 

envisioned. For a TSE matching error model, assume the following matching procedure is used to obtain the counts 

in Table 2. Define three sets containing all persons enumerated on a list. P is all persons enumerated in the PES, C is 

all persons enumerated in the Census, and A is all persons enumerated on the administrative list. 

Step 1: First match P to C and then P to A to determine X111, X110, X011, and X010 

Step 2: Next match A to C to determine X101 and X001 

Step 3: Finally, match C to A and P to determine X100 

Each of these matching steps is assumed to be independent. Thus no changes to a count obtained in step 1 or step 2 

occur as a result of a later step. 

The first estimator considered for this paper is the estimator associated with the no-second-order-interaction log 

linear model. This is the least restrictive log linear model for which data is available for estimation.   The incomplete 

2
3
 table of counts in Table 2 is divided into one complete 22  sub-table and one incomplete sub-table. Assume 

the cross-product ratio is the same in both sub-tables. Then the estimate of the missing cell in the incomplete 22  

table can be estimated using the known cross-product ratio from the complete 22  table. The assumption is that 

the dependence in the 22  table for PC  using only those individuals in A, is the same as the dependence in 

the 22  table for PC  using only those individuals not in A. This model is in some sense analogous to the 



 
 

assumption of independence for the 22  table used for DSE but is one layer deeper. All pairs of sources can 

exhibit dependence, but the amount of dependence in each pair is assumed to be unaffected by conditioning on the 

third source. 

The estimator for this model is 
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Matching error has no effect on the census count, NC , the PES count, NP, or the administrative list count, NA. 

The true population count, N, is unknown as is the true population count in each cell denoted by Nijk . For example 

the true count in the 101 cell is N101while the observed count after matching is X101. 

For all persons in P or A, define a 1 or 0 indicator, y, as 1 for matched and 0 for not matched to the census.  

For all persons in P or C, define a 1 or 0 indicator, w, as 1 for matched and 0 for not matched to the administrative 

list. 

For all persons in C or A, define a 1 or 0 indicator, z, as 1 for matched and 0 for not matched to the PES. 

In addition, define a 1 or 0 indicator, c, as 1 for truly in the census and 0 for truly missed in the census. 

Define a 1 or 0 indicator, a, as 1 for truly on the administrative list and 0 for truly missed on the administrative list. 

Define a 1 or 0 indicator, p, as 1 for truly in the PES and 0 for truly missed in the PES. 

With this notation, the observed counts after matching are as follows: 
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Expected Value and Variance 

Expressions for the expected value and variance  of these observed counts as well as the expected value and variance 

of NSOI using Taylor Linearization are provided in Appendix 1.  

3. Alternative Estimators 

The no second order interaction estimator, NSOI, requires the observed counts after matching for each of the seven 

observed cells from Table 2. Thus, NSOI may have a large bias if there is substantial matching error. As, mentioned 

earlier, several alternative estimators using three lists are presented in Griffin (2013). Seven of these estimators are 

motivated by hierarchical log linear models as described in Fienberg (1972). The no-second-order-interaction model 

{CP, PA, CA} is the least restrictive log linear model for which data is available for estimation. Three of the seven 

estimators are based on conditionally independent log linear models and three others are based on jointly 

independent log linear models. In each case, the three estimators are of the same format based on the dependence 

between sources C, P, and A taken two sources at a time. Here we consider one conditionally independent model 

and one jointly independent model. 



 
 

Jointly independent model {A, CP} assumes that there is a relationship between C and P, but neither C nor P has a 

relationship with A. This is ordinary two-way independence between A and a categorical variable composed of all 

four combinations (captured/not captured) of C and P. The estimate for the 000 cell is the usual dual-system estimate 

for the unobserved cell in the 22  table for which one list is A and the other list is formed by combining C and P 

(un-duplication requiring matching is necessary). The population estimator for this model is as follows: 
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Conditionally independent model {CP, CA} assumes that each level (captured/not captured) of C, P and A are 

independent. The estimate for the 000 cell is the usual dual-system estimate for the unobserved cell in the 22   

table conditional on C = 0, using the A list and the P list after removing all individuals captured on the C list (un-

duplication requiring matching is necessary). The population estimator for this model is as follows: 
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It seems possible that either of these alternative estimators could be less affected by matching error than TSE. The 

estimate for the 000 cell for CI only uses three of the seven observed counts after matching. The estimate for the 000 

cell for JI uses all observed counts but sums of observed counts may have less net error than the total error over each 

individual cell. 

Expressions for the expected value and variance of JI using Taylor Linearization are provided in Appendix 2.  

Expressions for the expected value and variance of CI using Taylor Linearization are provided in Appendix 3.  

4. Creating the Simulated Populations 

Populations of N = 1000 persons will be simulated, allowing for heterogeneous capture probabilities and 

homogeneous conditional odds ratios. One conditional odds ratio, is the odds ratio for the 2×2 table of CxP 

conditional on capture on A and the other is the odds ratio for the 2×2 table of C×P conditional on not captured 

(missed) on A. 

4.1 Creating a Specified Conditional Odds Ratio 

Omitting any subscript for an individual member of the population, the 2×2 table of conditional capture probabilities 

for census capture and PES capture given capture on the administrative list is given in Table 3. 

Table 3:  Capture Probabilities for Census and PES given Capture on Administrative list 

  

In PES   1 

 

Out of PES   0 

 

In Census             1          P11          P10 P1+ 

Out of Census      0          P01          P00  

          P+1   

 



 
 

In order to create a simulated population with a given set of conditional odds ratios, the odds ratio formula for a 

22  sub-table is written as a function of an unknown proportion in the 11 cell ( 11P ) and the known marginal 

proportions ( 1P  and 1P ). 

Thus given 11 ,  PP , and odds ratio 
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This equation can be solved for P11 using the quadratic formula producing two roots one of which is between 0 and 1 

and is the one we want. 

This value of P11 and given P1+ and P+1 provides the desired odds ratio  . 

The process described starting with Table 3 is repeated for capture probabilities for the census and the PES given not 

captured (missed) on the administrative list allowing in some simulations for a different conditional odds ratio θ. 

5.2 Generating a 1000 Person Population Allowing for Heterogeneity in Capture Probabilities 

We want to generate several populations of size N = 1000 persons to have particular capture properties. This is 

accomplished by specifying two conditional odds ratios. 

Let 1  be the odds ratio for census and PES given capture on the administrative list, and 2  be the odds ratio for 

census and PES given not captured on the administrative list. 

Given 1  and 2 (assumed constant over persons) and ten beta parameters in the following conditional capture 

probabilities  
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for k = 1 to 1000, independently generate Xk ~N(0,1) and calculate  

notAPPnotACPAPPACPAP kkkkk ,,,, .   

Note that although the conditional odds ratios are assumed constant over persons, the capture probabilities are 

heterogeneous since variation in the independent variables is created. 

Using 1  and 
APPACP kk , , we use the methodology from section 5.1 and equation (1) to solve for the 

probability of capture in both the census and PES given capture on the administrative list. Then complete the 2×2 



 
 

table of capture probabilities given capture on the administrative list. Multiplying each of these conditional 

probabilities by APk  provides 001,011,101,111, ,,, kkkk pppp  

Then, using 2  and 
notAPPnotACP kk , , use the methodology from section 5.1 and equation (1) to solve 

for the probability of capture in both the census and PES given not captured on the administrative list. Then 

complete the 2×2 table of capture probabilities given not captured on the administrative list. Multiplying each of 

these conditional probabilities by )1( APk  provides 000,010,100,110, ,,, kkkk pppp . 

Next, generate a number u from 0 to 1 from the distribution Uniform (0,1) and use the cumulative distribution of the 

eight cell probabilities to determine which of the eight cells of Table 2 person k falls 

After completing the above for each of the 1000 population persons, tabulate the seven observed counts from Table 

2 and using these compute  
1000

)(tE
Rt   for t =  NSOI, JI, and CI. This is the ratio of the expected value (using the 

expressions given in the Appendix) of the estimated population count to the true population count and provides a 

measure of the accuracy of the estimate. 

5. Replication 

This paper presents results for 1000 independent replications of the population generation as specified in section  5.2 

for a given 1  and 2 (assumed constant over persons) and one set of beta parameters. 

For each of the three model estimates t = NSOI, JI and CI, use these 1000 replicates to compute the empirical mean 

ratio R
t
 denoted as 

tR , and its variance, )( tRVar  . 

 

Note that none of the precise assumptions, particularly homogeneity in capture probability, needed for validity of 

any of these ten estimators is satisfied by any of these simulated populations. Darroch et al. (1993) provide some 

arguments that the no three-way interaction model may be a fair approximation except for heterogeneity. The kind 

of person-to-person heterogeneity introduced by these simulations might be expected to be a reasonable 

representation of the reality of list formation. This heterogeneity produces bias in these estimates even if the model 

assumptions about the relationship between the capture attempts hold. 

6. Results  

 Define the “Average Capture Probability” (ACP) as the average of the five probabilities defined in section 5.2 for Xk 

= 0 (the mean of the random variable X). It is used as a measure of  “Hard to Reach” since lower values indicate 

lower capture probabilities (i.e., harder to reach). 
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Table 4 shows results for each of the four estimator alternatives for four sets of odds ratios θ1 and θ2 (1.5 and 1.2; 

0.75 and 0.85; 0.75 and 0.75; 1.5 and 1.5.) using a false positive rate of 0.062 and a false negative rate of 0.023.  

These error rates are from Biemer (1988) and are for a computer matching operation from a 1986 pretest of PES 

matching procedures in Los Angeles, CA. When θ1 = θ2, the odds ratio for census capture or not by PES capture 

status is independent of capture status on the administrative list (no second order interaction). When, 21    the 



 
 

odds ratio for census capture or not by PES capture status is dependent on capture status on the administrative list. 

For each estimator the mean ratio of the expected value of the estimated population count to the true population 

count over the thousand replicates, 
tR , and its standard error, )( tRVar  are shown.  

The mean ratio results vary by odds ratio alternatives. For θ1 = 1.5 and θ2 = 1.2, estimator I (using DSE) was best 

(closest to 1) with an average R of 1.002 (se = 0.003) and the best triple-system estimator was CI with an average R 

of 0.963 (se = 0.002). For θ1 = 0.75 and θ2 = 0.85, estimator I (using DSE) had an average R of 1.283 (se = 0.005) 

and the best triple-system estimator was NSOI with an average R of 1.015 (se = 0.005). For θ1 = 0 .75 and θ2 = 0 

.75, estimator I (using DSE) had an average R of 1.332 (se = 0 .005) and the best triple-system estimator was CI 

with an average R of 0.974 (se = 0.002).  For θ1 = 1.5 and θ2 = estimator 1.5, estimator I (using DSE) had an average 

R of 0.934 (se  = 0.003) and the best triple-system estimator was NSOI with an average R of 1.052 (se  = 0.005). 

Table 5 shows the average standard error of the alternative estimators for the population of true size 1000.   The 

average of these averages over the odds ratio alternatives are about  97 for NSOI, 24 for JI, 21 for CI, and 34 for I 

(using DSE). 

             8.  Analysis 

Doing this simulation with different β parameters and odds ratio alternatives (results from these alternatives not 

presented in this paper) has shown that results vary. In particular the excellent performance of DSE for θ1 = 1.5 and 

θ2 = 1.2 (average R of 1.002), was observed for only that set of parameters and is not necessarily an indication that 

DSE is in general less biased when matching error is incorporated in bias measures. 

The odds ratio for census and PES given capture on the administrative list may well be greater than the odds ratio 

for census and PES given not captured on the administrative list (θ1 > θ2 ). It may also be likely that both of these 

odds ratios are greater than 1. Keeping in mind that results will vary for different β parameters and odds ratio 

alternatives, Table 6 shows some results for the same β parameters and for θ1 = 1.75 and θ2 = 1.5 allowing the false 

positive and false negative error rates to vary. The first set of error rates are 0.062 and 0.023 as in Table 4.  Error 

rates about twice as large (0.12 and 0.05) and about half as large (0.03 and 0.01) are also shown as is the cases of no 

matching error at all.  For error rates of 0.062 and 0.023, DSE had an average R of 0.958 and the best triple-system 

estimator was CI with an average R of 0.967.  For error rates about twice as large (0.12 and 0.05), DSE had an 

average R of 0.958 and the best triple-system estimator was CI with an average R of 0.948.  For error rates about 

half as large (0.03 and 0.01), DSE had an average R of 0.967 and the best triple-system estimator was CI with an 

average R also of 0.967. For no matching error, DSE had an average R of 0.952 and the best triple-system estimator 

was CI with an average R of 0.965. 

9. Summary and Conclusion 

Three sets of capture attempts can produce more accurate estimates than two capture attempts. However, there is 

likely to be increased matching error going from two attempts to three attempts. For two attempts at capture, there 

are only four cells in a 22  table. Given the marginal counts of the total count for each of the attempts, matching 

is only necessary to obtain the 11 cell (captured in both attempts). For three attempts, there are eight cells. For 

NSOI, no-second-order-interaction, counts are required for all observable seven cells in order to estimate the 000 

cell. NSOI makes a less restrictive assumption (no second order interaction) than CI (conditionally independent) and 

JI (jointly independent). In theory, with no matching error, NSOI should be the better than JI, CI, or I (using DSE) if 

there are no other errors in obtaining the counts. Second order interaction and heterogeneity in capture probabilities 

are likely in the real world for most populations. For example, both the 111 cell and the 110 cell are required for 

TSE so that both the count of captured in the first two attempts and in the third attempt AND captured in the first 



 
 

two attempts but missed in the third are necessary. Obtaining all these counts from a complex matching operation 

may be error prone.  

Since doing this simulation with different β parameters and alternative odds ratios (not presented in this paper) has 

shown that results vary, the conclusions given in the paper serve as an illustration of potential results and cannot be 

used to make definitive generalizations. The results shown indicate that that matching error can lessen the theoretical 

advantages of triple-system modeling. Due to matching error, the DSE may be more accurate than TSE using any of 

the triple-system estimators. For the triple-system estimators, CI or JI may be more accurate than NSOI due to using 

fewer of the seven observed cells in the triple-system setup. Increasing the matching error from the levels used by 

Biemer (1988) has a great effect on the accuracy of all the estimators.  The best estimators, CI and DSE, for the 

Biemer level matching error had about a 4 percent undercount and doubling the matching error resulted in about the 

same accuracy. Decreasing the matching error level produced little change in accuracy.  The relative accuracy 

among the estimators did not change much with varying matching error levels.  
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Table 4: Accuracy of Alternative Estimators by Varying Odds Ratios  

  

False Positive Rate = 0.062 

False Negative Rate = 0 .023 

Odds 

Ratios 

Θ1 = 1.5  

Θ2 = 1.2 

Θ1 = 0.75  

Θ2 = 0.85 

Θ1 = 0.75  

Θ2 = 0.75 

Θ1 = 1.5  

Θ2 = 1.5 

Estimator tR  )( tRSE  
tR  )( tRSE  

tR  )( tRSE  
tR  )( tRSE  

NSOI 1.124 0.006 1.015 0.005 1.047 0.006 1.052 0.005 

JI 1.088 0.002 1.080 0.002 1.089 0.002 1.079 0.002 

CI 0.963 0.002 0.955 0.002 0.974 0.002 0.946 0.002 

DSE 1.002 0.003 1.283 0.005 1.332 0.006 0.934 0.003 

 

Table 5: Average Standard Error of Estimates by Varying Odds Ratios 

 

Table 6: Accuracy of Alternative Estimators by Varying Error Rates 

 

 

 

 

 

 

 

 

 

False Positive Rate = 0.062 

False Negative Rate = 0 .023 

Odds Ratio Θ1 = 1.5  

Θ2 = 1.2 

Θ1 = 0.75  

Θ2 = 0.85 

Θ1 = 0.75  

Θ2 = 0.75 

Θ1 = 1.5  

Θ2 = 1.5 

Estimator Standard Error Standard Error Standard Error Standard Error 

NSOI 106 93 100 90 

JI 25 24 24 24 

CI 22 21 21 21 

DSE 32 36 36 31 

Fixed Odds Ratios                                                      Θ1 = 1.75  

                                                     Θ2 = 1.25 

False Positive 

Error Rate 

         0.062 0.12 0.03 0 

False Negative 

Error Rate 

         0.023 0.05 0.01 0 

 tR  
 

tR  
 

tR  
 

tR  
 

NSOI 1.183 1.121 1.220 1.125 

JI 1.093 1.066 1.106 1.098 

CI 0.967 0.948 0.967 0.965 

DSE 0.958 0.958 0.967 0.952 



 
 

Appendix 1: Expected Value and Variance of No-Second-Order-Interaction Model 

For the observed seven counts after matching, as an example, all the details are first provided for X110. 

For any person j,  

yj(1-wj) = 1 if yj=1 and wj=0, otherwise yj(1-wj) =0.  

Thus yj(1-wj) is a Bernouilli random variable with parameter )0Pr()1Pr(  jjj wyp .  

Thus 
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Persons enumerated in the PES can truly be in cells 111, 110, 011, or 010. pj is different for each of these true cells. 

Using the cell subscripts, for this example, person j is truly in cell 010, 010pp j   . 

Thus, 
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Covariance terms necessary for the TAYLOR Linearization variance approximation 

Due to the assumptions of independence between matching steps, there are seven non-zero covariance terms among 

the observed counts after matching. 

From Step 1:  
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From Step 2: ),cov( 001101 XX  

From Step 3: There are no covariance terms since only one count is observed from step 3 matching. 

Details of the derivation are provided for ),cov( 110111 XX . 
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Persons enumerated in the PES can truly be in cells 111, 110, 011, or 010. 

For cell 111. 
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For cell 110 
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The other non-zero covariance terms are as follows: 
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Taylor Linearization 

For any of the seven observed counts after matching, let ijkijk EXE )( . 

The estimator of population, NSOI, is approximated using Taylor Linearization about the vector of expected values 

of the seven observed counts resulting in, 
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Using this approximation, 
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For variance purposes the terms of the approximation involving the second partial derivatives are ignored. Thus we 

want the variance of the following expression: 
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Using obvious notation, write this as 
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And the variance is as follows: 
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Appendix 2: Expected Value and Variance of Jointly Independent Model 

Use the notation from Appendix 1. 

The estimator of total population JI is approximated using Taylor Linearization about the vector of expected values 

of the seven observed counts resulting in, 
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Using this approximation, 
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For variance purposes the terms of the approximation involving the second partial derivatives are ignored. Thus we 

want the variance of the following expression: 
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Using obvious notation (same as for NSOI except the partial derivatives are different, write this as 
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And the variance is as follows: 
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Appendix 3: Expected Value and Variance of Conditionally Independent Model 

Use the notation from appendix 1. 

The estimator of total population CI is approximated using Taylor Linearization about the vector of expected values 

of the seven observed counts resulting in, 
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Using this approximation, 
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For variance purposes the terms of the approximation involving the second partial derivatives are ignored. Thus we 

want the variance of the following expression: 
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Using obvious notation (same as for TSE except the partial derivatives are different, write this as 
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And the variance is as follows: 
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