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What is calibration weighting?

Let {dk} be original survey (design) weights.
tx = ∑U xk is a known total in the population with indices U; xk can
be a vector
The calibrated weights {wk} are “close” to {dk} but satisfy a set of
calibration equations:

∑
s

wkxk = ∑
U

xk .

The “closeness” is measured by a distance function:
1 Linear calibration: Ep{∑s(wk −dk )2/dk qk}
2 Raking: Ep{∑s[wk log(wk/dk )−wk + dk ]}
3 Logit method and others.

The calibration estimator t̂yw = ∑s wkyk .
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Calibration Estimator Properties

The calibration weights can be written as wk = dkFk (x ′k λ̂s), where
Fk (·) comes from the inverse of distance function.
The linear calibration estimator

t̂yl = ∑
s

wkyk = t̂Ay + (tx − t̂Ax )′B̂s

AV (̂tyw ) = AV (̂tyl).
Calibration weigthing can reduce mean squared error.
There are various ways to compute the weights, including in the
survey and TeachingSampling packages in R.
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Calibration on Estimated Control Totals

In calibration only tx are needed from outside source.
Sometimes tx are not available and one may seek estimated totals
t̂Cx instead.
The calibration constraint equation becomes:

∑
s

wkxk = t̂Cx .

Calibration estimator with estimated control totals t̂yW (CEEC).
Assuming Analytic Survey and Control Total Survey are
independent.
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Formula of the CEEC

The linear CEEC

t̂yL = ∑s wkyk = t̂Ay + (̂tCx − t̂Ax )′B̂s

, where B̂s = T−1
s ∑s dkqkxkyk , and Ts = ∑s dkqkxkxk ′.

The general CEEC

t̂yW = ∑
s

wkyk = ∑
s

dkFk (x ′k γ̂s)yk

where γ̂s can be computationally solved from calibration
constraints.
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Assumptions for the CEEC

1 max ||xk || and F ′′k (0) are both uniformly bounded by K1 < ∞ and
K2 < ∞, respectively.

2 limN−1tx exists.
3 N−1(̂tAx − tx ) → 0 in design probability.

4 n1/2N−1(̂tAx − tx )
d→ MVN(0,ΣA).

5 Cλ =
⋂

k∈U{λ : x ′kλ ∈ Imk (dk )} is a convex domain as well as an
open neighborhood of 0.

6 N−1(̂tCx − tx ) → 0 in design probability.

7 nαN−1(̂tCx − tx )
d→ MVN(0,ΣC) with α ≥ 1/2, so the control total

survey is at least as accurate as the analytic survey we conduct.
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Properties of the CEEC

t̂yL and t̂yl has exactly the same expectation.

N−1(̂tyL− t̂yl) = Op(n−α )

t̂yW is design consistent as well as asymptotically design
unbiased.
N−1(̂tyW − t̂Ay ) = Op(n−1/2) and N−1(̂tyW − t̂yL) = Op(n−1).

n1/2N−1(̂tyW − t̂yl) = Op(n1/2−α ).

8



Variance Estimation for the CEEC

Extra variation brought by the estimated control totals.
Variance might be underestimated by traditional methods.
the contribution of the bias to the MSE is likely to be small.
The key is to precisely estimate the inflation part of the variance.
The asymptotic variance of t̂yW is:

AV (̂tyW ) = AV (̂tyw ) + B′V (̂tCx )B

= ∑∑U ∆kldkEkdlEl + B′V (̂tCx )B,

where B = (∑U xkx ′k )−1(∑U xkyk ).
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A traditional variance estimator (Naive)

Traditional variance estimator considers the estimated control
totals as they were true population totals.
Deville and Särndal, 1992, JASA first defined the calibration
estimator as well as gave a variance estimator.
The formula is:

V̂naive (̂tyW ) = ∑∑s(∆kl/πkl)(wkek )(wlel)

where wk = dkFk (x ′k γ̂s), and ek = yk −x ′k B̂s is the sample fit
residual.
Whether this formula is a good estimate depends on the accuracy
of control total survey.
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Taylor linearization variance estimator (TL)

The Taylor linearization variance estimator is:

V̂TL(̂tyW ) = ∑∑s ∆̌klwkekswlels + B̂′sV̂ (̂tCx )B̂s

def
= V̂naive + V̂inf

Ep(B̂′sV̂ (̂tCx )B̂s) = B′V (̂tCx )B + Op(n−2α ).

V̂ (̂tCx ) needs to be specified also from the outside source.
Taylor Linearization method is likely to be faster than Jackknife
methods.
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Multivariate normal jackknife method (MVNJ)

Dever and Valliant, 2010, Survey Methodology first used this
method in variance estimation of poststratification to populatoin
control totals. It is a delete-one jackknife method.
The replicates t̂Cx(j) = t̂Cx + cn ε̂(j)

√
1/(n−1)

where ε̂(j)
i .i .d∼ MVN(0, V̂ (̂tCx )) (j = 1,2, ...,n) and cn =

√
1/(n−1).

The replicates of t̂yL: t̂yL(j) = t̂Ay(j) + (̂tCx(j)− t̂Ax(j))
′B̂s(j)

The MVNJ variance estimator is:

V̂MVNJ (̂tyW ) =
n−1

n

n

∑
j=1

(̂tyL(j)− t̂yL)2.

Ep{V̂MVNJ}= Ep[n−1
n ∑

n
j=1(̂t∗yL(j)− t̂yL)2] + B′V (̂tCx )B + Op(n−2α )
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Fuller two-phase jackknife after Taylor linear. (F2TL)

t̂yL = ∑s dkaksEk + t̂ ′CxB and θ̂ − t̂ ′CxB = Op(n−1), where θ̂ = t̂ ′Cx B̂s.

Fuller jackknife method is used to estimate V (θ̂).

Let V̂ (̂tCx ) be m×m matrix, and λ1, λ2,...,λm be its eigenvalues
with q1, q2,...,qm their corresponding eigenvectors.

The replicates are: t̂Cx(j) = t̂Cx + cm λ
1/2
j qj and θ̂(j) = t̂ ′Cx(j)B̂s(j),

where cm = (m−1)−1/2m1/2.
Then the F2TL variance estimator is:

V̂F2TL(̂tyW ) = V̂naive (̂tyW ) +
m−1

m

m

∑
j=1

(θ̂(j)− θ̂)2.

Ep(V̂F2TL) is equal to
Ep(V̂naive) + Ep[m−1

m ∑
n
j=1(θ̂ ∗(j)− θ̂)2] + B′V (̂tCx )B + Op(n−2α ).
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Simulation procedure

1 SDR 2010 is chosen as our populatoin. The population contains
27297 individuals, which were divided by us into 54 clusters.

2 At first stage np=30 PSU’s (U1, U2,...,U30) are sampled without
replacement out of 54 clusters.

3 Secondly, from within each PSU sampled, we selected 50
individuals using simple random sampling without replacement.

4 Choose salary as the parameter we want to estimate and then
choose m=20 auxiliary variables (X1,X2, ...,X20).

5 For each Xi , calculate the PSU totals for each sampled PSU: (̂ti1,
t̂i2,..., t̂i30)

6 Estimate population totals of Xi using PSU totals, then consider it
as estimated control totals.

7 Calculate the calibrated estimator and its variance estimation with
four methods mentioned above.
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Simulation Result

Variance estimator RBVE (%) Cover (%) MeanSE StdSE
Simulation 1. np=20, linear calibration.

HT 10.40 94.5 277,002 23,373
Naive -96.31 30.4 49,782 10,246

TL 5.88 95.4 271,200 23,739
MVNJ 9.71 93.7 272,788 48,803
F2TL 6.60 96.0 271,668 28,489

Simulation 2. np=30, raking.
HT 9.56 95.2 190,940 10,888

Naive -95.68 31.5 37,586 5,388
TL 4.44 94.1 186,402 11,032

MVNJ 7.46 94.4 187,470 27,049
F2TL 4.92 94.4 186,537 15,280
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Summary

The CEEC is certainly a reasonable estimate when the population
control totals are unknown. In simulation 2, the estimates are
close to the true values.
Overall, all the improved variance estimators we give are
acceptable in simulation 2. They certainly mitigate the bias of the
naive estimator.
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Future plans
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Thanks!
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