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Abstract: Several design-based, model-based, and model-assisted methods have been developed to adjust survey 
weights for nonresponse or coverage errors, to reduce variances through the use of auxiliary data or by restricting 
the range of the weights themselves.  Some methods directly change the weights, like nonresponse adjustments, 
calibration weighting, and design-based ad hoc weight trimming methods.  Other methods, like the robust 
superpopulation modeling approaches, implicitly adjust the associated case weights.  A newly developed method 
called generalized design-based inference involves modeling the weights as a function of the survey response 
variables and using the smoothed weights predicted from the model to estimate finite population totals.  This paper 
first provides a review of the alternative weighting adjustment methods proposed in the literature.  We also discuss 
the methods’ strengths and weaknesses, as related to implications for sample-based inference. 
 
Introduction 

 
Weighting samples is important to reflect not only sample design decisions made at the planning stage and use of 
auxiliary data to improve the efficiency of estimators, but also practical issues that arise during data collection and 
cleaning that necessitate weighting adjustments.  Planned and unplanned adjustments to survey weights are used to 
account for these practical issues.  The standard, theoretically-based methods for weighting are summarized by 
Kalton and Flores-Cervantes (2003).  Often these adjustments lead to variations in the survey weights.  When large 
variation in survey weights exists, it can potentially produce unreasonable point estimates of population means and 
totals and decrease the precision of these point estimates (e.g., Valliant 2004).  Survey practitioners commonly face 
this problem when producing weights for analysis datasets (Kish 1990; Liu et al. 2004; Chowdhury et al. 2007).  
Even when the estimators are unbiased, extreme weights can produce inefficient estimates.  Trimming or truncating 
large weights can reduce unreasonably large estimated totals and substantially reduce the variability due to the 
weights.  This reduces variance of the finite population estimates at the expense of introducing bias; if the variance 
reduction is larger than the squared bias increase, then the net result is an overall decrease in mean square error 
(MSE) of the estimate.  The various existing trimming methods use either design-based or model-based approaches 
to meet this MSE-reduction goal.   
 
Variation in survey weights can arise at the sample design, data collection, and post-data collection stages of 
sampling.  First, intentional differential base weights, the inverse of the probability of selection, are created under 
different sampling designs.  For example, multiple survey analysis objectives may lead to disproportionate sampling 
of population subgroups.  Issues that occur during data collection can also impact probabilities of selection, e.g., in 
area probability samples, new construction developments with a large number of housing units that were not 
originally listed may be discovered.  These are usually subsampled to reduce interviewer workloads, but this 
subsampling may create a subset of units with extremely large base weights.  Another example is subsampling cases 
for nonresponse follow up; subsequent weighted analysis incorporates subsampling adjustments.  Last, post-data 
collection adjustments to base survey weights are also commonly used to account for multistage sampling.  
Examples include subsampling persons within households (Liu et al. 2004), adjusting for nonresponse to the survey 
(Oh and Scheuren 1983), calibrating to external population totals to control for nonresponse and coverage error 
(Holt and Smith 1979; Särndal et al. 1992; Bethlehem 2002; Särndal and Lundström 2005), and combining 
information across multiple frames (such as telephone surveys collected from landline telephone and cell phone 
frames, e.g., Cochran 1967; Hartley 1962).   
 
Often multiple adjustments are performed at each stage of sample design, selection, and data editing.  For example, 
the Bureau of Transportation Statistics (2002) used the following steps to produce weights in their National 
Transportation Availability and Use Survey, a complex sample using in-person household interviews to assess 
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people’s access to public and private transportation in the U.S.: 
 
• Household-level weights: base weights for stratified, multistage cluster sampling; unknown residential status 

adjustment; screener nonresponse adjustment; subsampling households for persons with and without 
disabilities; multiple telephone adjustment; poststratification. 

 
• Person-level weights: the initial weight is the product of the household-level weight from above and a 

subsampling adjustment for persons within the household; an extended interview nonresponse adjustment; 
trimming for disability status; raking; and a non-telephone adjustment. 

 
This example also illustrates that there can be a need for multiple weights based on the level of analysis (here 
household-level vs. person-level) that is desired from the sample data.   
 
The effect of such weighting adjustments, when applied across the sample’s design strata and PSUs, can be that the 
variability of the weights in increased (Kish 1965, 1992; Kalton and Kasprzyk 1986).  This can increase the 
variances of the sample-based estimators, thereby decreasing precision.  A few very large weights can also be 
created such that the product i iw y  creates an unusually large estimate of the population total.  To see this, consider 
the following empirical example from the 2005-2006 National Health and Nutrition Examination (NHANES) 
public-use file dataset (NHANESa).  The interview-level weights for 10,348 people have post-stratification 
adjustments to control totals estimated from the Current Population Survey (NHANESb).  These weights range from 
1,225 to 152,162 and are quite skewed: 

 
Figure 1. Histogram of NHANES 2005-2006 Adult Interview Survey Weights 
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The weights in the tails of the distribution, such as the one shown in Figure 1, can lead to overly large totals with 
associated large variances, particularly when the weight is combined with a large survey response value.  This 
problem can increase for domain-level estimates, particularly in establishment data, when variables of interest can 
also be highly skewed toward zero.  On the other hand, large weights for some subgroups of units may be necessary 
to produce estimators that are, in some sense, unbiased. Beaumont and Rivest (2008) estimate establishment sample 
units that were assigned large design weights based on incorrect small measures of size accounted for 20-30% of an 
estimated domain total.  These outlying weights also drive variance estimates. 
 
There is limited literature and theory on design-based weight trimming methods, most of which are not peer-
reviewed publications and focus on issues specific to a single survey or estimator.  The most cited work is by Potter 
(1988; 1990), who presents an overview of alternative procedures and applies them in simulations.  Other studies 
involve a particular survey (e.g., Battaglia et al. 2004; Chowdhury et al. 2007; Griffin 1995; Liu et al. 2004; Pedlow 
et al. 2003; Reynolds and Curtin 2009).  All design-based methods involve establishing an upper cutoff point for 
large weights, reducing weights larger than the cutoff to its value, then “redistributing” the weight above the cutoff 
to the non-trimmed cases.  This ensures that the weights before and after trimming sum to the same totals (Kalton 
and Flores-Cervantes 2003).  The methods vary by how the cutoff is chosen.  There are three general approaches: (1) 
ad hoc methods that do not use the survey response variables or an explicit model for the weight to determine the 
cutoff (e.g., trimming weights that exceed five times the median weight to this value); (2) Cox and McGrath’s 
(1981) method that uses the empirical MSE of a particular estimator and variable of interest; and (3) methods 
assuming that the right-tail of the weights follow some skewed parametric distribution, then use the cutoff associated 
with an arbitrarily small probability from the empirical distribution (Chowdhury et al. 2007; Potter 1988).  
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Examples of Post-Data Collection Weight Adjustment Methods 
 
Here we provide some examples of various weighting adjustment methods that are performed in sample surveys.  
This is not an all-encompassing list; refer to the post-data collection adjustment references and Chapters 4, 8, 16, 
and 25 in Pfeffermann and Rao (2009) for more detail.   
 
Example 1. Cell-based Nonresponse Adjustments.  These adjustments involve categorizing the sample dataset into 
cells using covariates available for both respondents and nonrespondents that are believed to be highly correlated 
with response propensity and key survey variables.  Assuming that nonresponse is constant within each cell 
(“missing at random;” age/race/sex are often used in household surveys), the reciprocal of the cell-based response 
rate is used to increase the weights of all units within the cell.  Propensity models across all cells using the cell-
based covariates can also be used to predict the response rate.  Other nonresponse weighting adjustments are 
discussed in Brick and Montaquila (2009). .  
 
Example 2. Dual Frame Adjustments.  For surveys that use multiple frames, e.g., telephone and area probability 
samples or landline and cell phone surveys, additional weighting adjustments may be used to account for units that 
are contained in more than one frame.  Often composite estimators of totals are used, which are a weighted average 
of the separate frame estimates (Hartley 1962; Cochran 1967) incorporates the known or estimated overlap of units 
on both frames.  These can be explicitly expressed as adjustments to each sample unit’s weight. .  
 
Example 3. Poststratification.  Here survey weights are adjusted such that they add up to external population counts 
by available domains.  This widely-used approach allows us to correct the imbalance than can occur between the 
sample design and sample completion, i.e., if the sample respondent distribution within the external categories 
differs from the population (which can occur if, e.g., subgroups respond or are covered by the frame at different 
rates), as well as reduce potential bias in the sample-based estimates. Denoting the poststrata by 1, ,d D= … , the 
poststratification estimator for a total involves adjusting the base-weighted domain totals ( d̂T ) by the ratio of known 

( dN ) to estimated ( ˆ dN ) domain sizes: 1
ˆ ˆ ˆD
PS d d ddT N T N== ∑ . .  

 
Example 4. Calibration. Case weights resulting from calibration on benchmark auxiliary variables can be defined 
with a global regression model for the survey variables (Huang and Fuller 1978; Bardsley and Chambers 1984; 
Bethlehem and Keller 1987; Särndal et al. 1992; Sverchkov and Pfeffermann 2004; Beaumont 2008; Kott 2009; 
Särndal and Lundström 2005; Slud and Thibaudeau 2010).  Deville and Särndal (1992) proposed a model-assisted 
calibration approach that involves minimizing a distance function between the base weights and final weights to 
obtain an optimal set of survey weights.  Here “optimal” means that the final weights produce totals that match 
external population totals for the auxiliary variables X  within a margin of error.  Specifying alternative distance 
functions produces alternative estimators. .  
 
In addition to the design-based methods, model-based estimation methods incorporate a model that is assumed 
between the survey variable of interest and some auxiliary variables whose individual values are assumed known for 
the entire finite population or for which totals are known.  When the relationship between the survey and auxiliary 
variables is strong, the model-based estimators can have superior performance over design-based ones.  There are 
two approaches: superpopulation modeling and its Bayesian extension.  In both methods, the model fit must be 
justified and the potential for variable-specific weights exists.  We also include a relatively new form of estimation 
called generalized design-based estimation under the category of model-based estimation.  While the form of 
inference is different, the incorporation of a model for weight trimming leads us to also include this method under 
the general category of model-based. 
 
Another approach, the model-assisted, appeals to the use of models, but particular design-based properties hold 
when the model does not.  By optimizing the weights such that benchmark auxiliary totals are met, this method can 
produce estimators with desirable design-based properties.  Recently, penalized (p-) spline estimators have been 
developed to produce estimators of a total that are minimally influenced by extreme data values.  Zheng and Little 
(2003, 2005) used p-spline estimators to improve estimates of totals from probability-proportional-to-size (pps) 
samples.  Breidt and Opsomer (2000) and Breidt et al. (2005) proposed and developed a model-assisted p-spline 
estimator that was more robust to misspecification of the linear model, resulting in minimum loss in efficiency 
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compared to other calibration estimators.  The p-spline estimators are a specific case of a robust model-prediction 
estimator.  The model-assisted approaches involve unit-level adjustments to weights, potentially creating more 
variability in the weights. 
 
Existing Design-Based Methods 
 
The most common sample-based inference for a finite population total involves the Horvitz-Thompson (HT, 1952) 
estimator.  This section briefly introduces the HT estimator and examples of methods that trim the HT weights. For 
s  denoting a probability sample of size n  drawn from a population of N  units, the Horvitz-Thompson estimator 
(Horvitz and Thompson 1952) for a finite population total of the variable of interest y  is  

 
ĤT i i i ii s i sT y w yπ∈ ∈= =∑ ∑ .        (1) 

Here the inverse of the probability of selection, ( )i P i sπ = ∈ , is used as the weight, 1
i iw π −= .  This estimator is 

unbiased for the finite population total in repeated π ps sampling, but can be quite inefficient due to variation in the 
selection probabilities if iπ  and iy  are not closely related.  The design-based variance of (1) is 

( ) ( )ĤT ij i j i j i ji U j UVar T y yπ π π π π∈ ∈= −∑ ∑ ,      (2)  

where ijπ  is the joint selection probability of units  i and j in the population set U .  Influential observations in 
estimating a population total using (1) and the variance estimator associated with the variance in (2) arise simply due 
to the combination of probabilities of selection and survey variable values.  Alternative sample designs, such as 
probability proportional to a measure of size, introduce variable probabilities of selection in (1).  The variability in 
selection probabilities can increase under complex multistage sampling and multiple weighting adjustments.  Thus, 
the HT-based estimates from one particular sample may be far from the true total value, particularly if the 
probabilities of selection are negatively correlated with the characteristic of interest (see discussion in Little 2004). 
 
Examples of existing design-based trimming methods are presented in the remainder of this section.  In all methods, 
outlier weights are flagged in the survey dataset, usually through data inspection, editing, and/or computation of 
domain-level estimates, then trimmed to some arbitrary value.  The remaining portion of the weight, called the 
“excess weight,” is then “redistributed” to other survey units (Kalton and Cervantes 2003).  This increases the 
weights on non-trimmed cases; if the increase is slight, then the associated bias is small, assuming that the initial set 
of weights produced unbiased estimates.  Redistributing the weight is done to ensure that the weights after trimming 
still add up to target population sizes.  The underlying assumption is that decreasing the variability caused by the 
outlying weights offsets the increase in bias incurred by units that absorb the excess weight.  The most extreme 
windsorized value for outlying weights is one; other possibilities include using weights within another stratum, 
adjacent weighting class, or some percentile value from an assumed weight distribution. 

 
The alternative design-based weight trimming methods differ in how the cutoff boundary to identify outlying 
weights is chosen, but they can be grouped into ad hoc methods (Ex. 5 and 6), methods that use the empirical MSE 
of the estimator of interest (Ex. 7), and methods that assume a specified parametric (skewed) distribution for the 
weight (Ex. 8 and 9).  
 
Example 5. The NAEP method. To reduce extremely large HT-estimator weights in (1.1), Potter (1988) proposed 

trimming all weights 2
i ii sw c w n∈> ∑  to this cutoff value.  This method was used to trim weights in the 1986 

National Association of Educational Progress sample (Johnson et al. 1987). The other sample units’ weights are 
adjusted to reproduce the original weighted sum in (1).  The value of c  is “arbitrary and is chosen empirically by 
looking at values of 2 2

i ii snw w∈∑ ” (p. 457 in Potter 1988).   The sum of squared adjusted weights is computed 

iteratively until no weights exceed the cutoff value, then the windsorized weights replace iw  in (1.1) to estimate the 
total.  Potter (1990) claims this method outperformed other MSE-minimizing alternatives, despite the fact it does not 
incorporate the survey response variables of interest. .  
 
Example 6. The NIS method. Chowdhury et al. (2007) describe the weight trimming method used to estimate 
proportions in the U.S. National Immunization Survey (NIS).  The “current” (at the time of the article) cutoff value 
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was ( ) ( )median 6i iw IQR w+ , where ( )iIQR w  denotes the inter-quartile range of the weights.  Versions of this 
cutoff (e.g., a constant times the median weight or other percentiles of the weights) have been used by other survey 
organizations (Battaglia et al. 2004; Pedlow et al. 2003; NCES 2003; Appendix A in Reynolds and Curtin 2009). .  
 
Example 7. Cox and McGrath’s MSE Trimming Method. Cox and McGrath (1981) proposed using the empirical 
MSE for a sample mean estimated at various trimming levels: 
n ( ) ( ) m ( ) m ( )m ( )2 2 , 1, ,t t w t t wMSE y y y Var y Var y Var y t T= − + + = … , where t  denotes the trimming level ranging 

from 1t =  for the unweighted sample mean estimator to t T=  denoting the fully-weighted sample estimator wy  
(the sample-based estimate of the mean with no weights trimmed).  Assuming that wy  is the true population mean, 
the MSE expression is calculated for possible values of t , which correspond to different weight trimming cutoffs, 
and the cutoff associated with the minimum MSE value is chosen as “optimal.”  Determining a trimming level by 
assuming that wy  is the true population mean is dubious because wy  itself may have a large variance and be far 
from the population mean in a particular sample. Potter (1988) also used this approach, estimating the MSE for a 
few survey variables at twenty trimming levels.  He determined the “optimal” trimming by ranking the MSE (from 1 
to 20) for each variable/trimming level combination, calculating the average rank across variables, and identifying 
the trimming level with the lowest average rank.  .  
 
Example 8. Inverse Beta Distribution Method. Potter (1988) also considered a method that assumes the survey 
weights ( w ) follow an inverted Beta, ( ),IB α β , distribution: 

( ) ( ) ( ) ( )
1 1

11 11 ,f w n n w
nw nw

α β
α β α β

+ −
−⎛ ⎞ ⎛ ⎞= − Γ + Γ Γ ≤ ≤ ∞⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
, where ( )Γ i  denotes the gamma function.  

The IB distribution was proposed since it is a right-tailed skewed distribution.  The mean and variance of the 
empirical IB distribution generated from the sample weights are used to estimate the IB model parameters.  The 
trimming level is then set according to some pre-specified quantile of the cumulative IB distribution and weights in 
the tail of the distribution are trimmed. .  
 
Example 9. Exponential Distribution Method.  Chowdhury et al. (2007) propose an alternative weight trimming 
method to the ad hoc method in Ex. 1.2.  They assume that the weights in the right-tail of the weight distribution 

follow an exponential distribution, ( )Exp λ , ( )
11 ,0w wf w e e wλ μλ μ
−− − −= = ≤ ≤ ∞ , where 1λ μ−=  and μ  is the 

mean of the weights within the right-tail of the weight distribution.  Using the ( )Exp λ  cumulative distribution 

function, for p  denoting an arbitrarily small probability, they obtain the trimming level ( )log pμ− .  In application 
to NIS data, they assume 0.01p = , using the cutoff 4.6μ .  They also account for “influential weights” (above the 
median) in estimating μ  by adjusting the trimming level to ( ) ( )logi ii smedian w p Z n∈+ ∑ , where 

( )i i iZ w median w= − for weights exceeding the median weight and zero otherwise.  They also use Fuller’s (1991) 

minimum MSE estimator to estimate μ  to avoid extreme values influencing ii s Z n∈∑  and derive the bias/MSE 
for children’s vaccination rates (proportions).  While they found the proposed method produced estimates with 
lower variance than the Ex. 1.2 method, the offset in the empirical MSE estimates was negligible. .  
 
Additional methods intended to bound the survey weights exist.  Two general approaches to bounding weights have 
been proposed in the calibration literature: bounding the range of the weights or bounding their change before and 
after calibration.  Deville and Särndal (1992) and Folsom and Singh (2000) describe a form of calibration that 
involves simply bounding the weighting adjustment factors.  Isaki et al. (1992) show that quadratic programming 
can easily accomplish this bounding of the calibration weights themselves, rather than bounding the adjustment 
factors.  Kott and Chang (2010) give another method of bounding the weights while calibrating and adjusting for 
nonresponse. 
 
Example 10. Bounding the Range of Weights.  One method proposed to bound the range of weights uses quadratic 
programming (Isaki et al. 2004).  Quadratic programming seeks the vector k  to minimize the function 
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0.5 T TΦ = −k Σk z k subject to the constraint 0
T c≥c k , where Σ  is a symmetric matrix of constants and z  a vector 

of constants.  For ( )1, , T
nd d=d …  and ( )1, , T

nw w=w …  denoting the set of input and final weights, respectively, 
calibration weights are produced when minimizing a distance function specified for Φ  subject to the  constraints 
that the final weights reproduce population control totals but fall within specified bounds: i i xi s w∈ =∑ X T  and 

iL w U≤ ≤ .  The extent to which the constraints affect the input weights depends on which units are randomly 
sampled.  In addition, there is no developed theory that a consistent and asymptotically unbiased variance estimator 
is produced when the weights are constrained using quadratic programming. .  
 
Example 11. Bounding the Relative Change in Weights. Another weight bounding method is to constrain the 
adjustment factors by which weights are changed (see Singh and Mohl 1996 for a summary).  Folsom and Singh 
(2000) propose minimizing a constrained distance function using the generalized exponential model for 
poststratification.  For the unit-specified upper and lower bounds ,i iL U  and centering constant iC  such that 

i i iL C U< < , the bounded adjustment factor for the weights is ( )
( ) ( ) ( )
( ) ( ) ( )

exp

exp

T
i i i i i i i i

i T
i i i i i i

L U C U C L A
a

U C C L A

− + −
=

− + −

X λ
λ

X λ
, 

where 
( )( )

i i
i

i i i i

U L
A

U C C L
−

=
− −

 can control the behavior of ( )ia λ .  For example, as 1, 2,i i iL C U→ → →∞ , 

( ) ( )1 exp T
i ia → +λ X λ .  It can be shown that the resulting estimator with 1iC =  is asymptotically equivalent to the 

GREG estimator.  This method is incorporated in SUDAAN’s proc wtadjust (RTI 2010). .  
 
There are also a number of somewhat simpler methods of dealing with unusual y values by either trimming the 
weights and/or the y’s that we have not covered here.  Hidiroglou and Srinath (1981) considered several that are 
appropriate for simple random samples.  Lee (1995) also reviews many of the older proposals for dealing with 
outliers . 
 
Model-Based Weighting Methods 
 
This section mixes summaries of existing methods of estimation and examples of the approaches proposed in the 
Bayesian and the superpopulation model-based approach, including both the Best Linear Unbiased Prediction 
(BLUP) and robust estimators.  While both approaches incorporate a model for the survey variable, each method has 
an associated set of case-level weights, even if only implicitly defined.  After introducing the two approaches, we 
provide some simple BLUP-based examples and existing robust methods proposed to estimate a total. 
 

Bayesian Methods  
 
While Bayesian inference for finite populations is not new (e.g., Basu 1971; Ericson 1969, 1988; Ghosh and Meeden 
1997; Rubin 1983, 1987; Scott 1977), Bayesian model-based approaches related to weight trimming have been 
recently developed.  The general Bayesian inference approach first specifies a model for the population values Y  as 
a function of some unknown parameter θ , denoted ( )p Y θ .  We denote X  as the matrix of covariates and I  as the 
vector of sample inclusion indicators.  To make all inferences for the finite population quantities, we use the 
posterior predictive distribution ( ),r sp y y I , where ry  are the N n−  non-sampled units of Y  and sy  the n  

sampled values (Little 2004).  The distribution ( )p Y θ  is combined with a prior for θ , denoted by ( )p θ , to 

produce the posterior distribution.  From Bayes’ theorem, the posterior predictive distribution of ry  is 

 ( ) ( ) ( ),r s r s sp p p d∝ ∫y y y y θ θ y θ .       (3) 

where ( ) ( ) ( ) ( ) ( ) ( ),s s s s sp p p p p p= =θ y θ y y θ y θ y  is the posterior distribution of the model parameters, 

( )sp y θ  the likelihood (as a function of θ ), and ( )sp y  a normalizing constant.  The distribution in (3) is used to 



7 
 

make all inferences about the non-sampled population values ry .  To make inference to the population total 

1
N

iiT y== ∑ , we use the posterior distribution ( )sp T y . 
 
Elliott and Little (2000) and Lazzeroni and Little (1993; 1998) propose using the Bayesian model-based framework 
to pool or collapse strata when estimating finite population means under post-stratification adjustments applied 
within strata.  They first establish that a model is assumed under various methods that pool data at either the weight 
trimming (related to weight pooling) or estimation (weight smoothing) stages.  In both the weight pooling and 
weight smoothing approaches, strata are first created using the size of the weights. These strata may either be formal 
strata from a disproportional stratified sample design (“inclusion strata”) or “pseudo-strata” based on 
collapsed/pooled weights created from the selection probabilities, poststratification, and/or nonresponse adjustments. 
These inclusion strata are ordered by the inverse of the probability of selection, the strata above a predetermined 
boundary (the “cutoff” or “cutpoint stratum”) are identified, and data above the cutpoint are smoothed.   
To obtain the final estimate of the finite population mean in both approaches, estimates of means are calculated for 
each possible smoothing scenario; the key distinction is that weights are smoothed in weight pooling while the 
means are smoothed in weight smoothing.  The final estimate is a weighted average across the means for all possible 
pooling scenarios, where each mean estimate produced under a trimming scenario is “weighted” by the probability 
that the associated trimming scenario is “correct.”  Since the probability that the trimming scenario is correct is 
calculated using the posterior probability of each smoothing cut point, conditional on the observed data and 
proposed Bayesian model, this method becomes variable-dependent.  Although the Bayesian models look similar, 
the two approaches are different and their technical details are discussed separately.   

 
Weight Pooling Details 
 

After dividing the sample into “strata,” as defined above, and sorting the strata by size of weights hw , the 
untrimmed (or “fully weighted”) sample-based estimate for a mean under stratified simple random sampling is  
 1 1 1

H H H
w h hi h h hh i h h i h hy w y w N y N= ∈ = ∈ == =∑ ∑ ∑ ∑ ∑ ,      (4) 

where h h hw N n= .  Elliott and Little (2000) show that when the weights for all units within a set of strata 
(separated by a “cut point,” denoted by l ) are trimmed to the predetermined cutoff 0w , estimate (4) is written as 

 1 *
01

l H
t h h hh h ly N y N w n y Nγ−

= == +∑ ∑ ,        (5) 

where ( ) 1
0 1

H l
h hh l hN w n Nγ −

= == − ∑ ∑  is the amount of “excess weight” (the weight above the cutpoint) absorbed 

into the non-trimmed cases and 1*
1

H l
h h hh l hy n y n−

= == ∑ ∑ .  They also show that choosing 

0
H H

h hh l h lw N n= == ∑ ∑ , which gives 1γ = , makes the trimmed estimator (5) correspond to a model-based 

estimator from a model that assumes distinct stratum means ( hμ ) for smaller weight strata and a common mean 
( lμ ) for larger weight strata: 

 ( ) ( )ind ind2 2~ , , ; ~ , ,

, constant

hi i h hi h l

h l

y N h l y N h lμ μ σ μ μ σ

μ μ

< ≥

∝
.     (6) 

They extend model (6) to include a noninformative prior for the weight pooling stratum, denoted ( ) 1P L l H −= = , 
and recognize that this model is a special case of a Bayesian variable selection problem (see their references): 

( )ind2, , ~ ,T
l l ll Nσ Σy β Z β , where T

lZ  is a n l×  matrix with an intercept and dummy variables for each of the first 

1l −  strata, the parameters 1 0 0 1, , l lμ β μ β β −= = +…  in lβ  are the model parameters associated with each 

smoothing scenario, and Σ  is 2σ  times an identity matrix.  That is, each smoothing scenario corresponds to a 
dummy variable parameter (1 for smoothing the weights within all strata above the cut point l  under the pooling 
scenario, 0 for not smoothing) in T

lZ .  Elliott and Little (2000) incorporate additional priors for the unknown 
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parameters 2σ  and lβ  from the Bayesian variable selection literature and propose  

 
( ) ( )

( ) ( ) ( ) ( ) ( )

ind ind2 2

1 21 2 2

~ , , ; ~ , ,

; ; , 2

hi i h hi h l

ll
l

y N h l y N h l

P L l H P L l P L l

μ μ σ μ μ σ

σ σ σ π −− +−

< ≥

= = = ∝ = ∝β
,    (7) 

where 1 0 0 1, , l lμ β μ β β −= = +… . Since the probability that the trimming scenario is correct is calculated using the 

posterior probability of each cut point l , conditional on the observed data and the hierarchical Bayesian model (7), 
this method becomes variable-dependent.  That is, pooling scenarios that are identified as the “most correct” for one 
variable may not be for others.  In addition, the explicit form of the case weights was not derived.  Assuming the 
prior (7) produces a posterior distribution that does not have a closed-form estimate like (6); while the model is more 
flexible, Elliott and Little found it can be susceptible to “over-pooling.”  Elliott (2008) used Bayesian analytic 
methods, such as data-based priors (Bayes Factors) and pooling conterminous strata, which improved robustness of 
the model and reduced the over-pooling. 
 

Weight Smoothing Details 
 
For their weight smoothing model, Lazzeroni and Little (1993, 1998) assume that both the survey response variables 
and their strata means follow Normal distributions: 

 ( ) ( )ind ind2~ , ; ~ ,T
hi h h HY N Nμ μ σ μ X β D ,       (8) 

where μ  is the vector of stratum means, β  is a vector of unknown parameters, D  a covariance matrix, and H  the 
total number of strata.  Under model (8), each data value is normally distributed around the true stratum mean hμ  

with constant variance 2σ .  Since each hμ  is unknown, the model assumes each stratum mean follows a Normal 
distribution with a mean that is a linear combination of a vector of known covariates X  and jointly follow an H-
multivariate Normal distribution.  They use this model to predict post-strata means.   For ry , observations not in the 
sample, hiY  is estimated by ˆhμ , the expected value of hiY  given the data.  The estimated finite population mean is 
the mean of the posterior distribution obtained assuming prior (8).  It can be written as:  
 ( )1 ˆH

wt h h h h hhy n y N n Nμ= ⎡ ⎤= + −⎣ ⎦∑ .       (9) 

The ˆhμ  term in (9) is an estimate of hy  that is smoothed toward TX β .  The (9) mean has a lower variance than the 
fully weighted mean (in (4), with no trimming).  Also, the weights have less influence, since we borrow information 
from ˆhμ , the means that are predicted using TX β .  In large samples, estimator (9) behaves like estimator (4) (as the 

ˆhμ  term tends to hy ), but it smoothes stratum means toward TX β  for small sample sizes.   
 
Lazzeroni and Little (1998) use linear and exchangeable random effects models to estimate the parameter β .  They 
also consider the groups (“strata”) used for establishing trimming levels (denoted by h ) as being fixed.  Elliott and 
Little (2000) extend model (9) and relax the assumption that h  is fixed.  They create the strata under particular fixed 
pooling patterns and use non-informative priors (in model (8)) for the unknown model (9) parameters.  Estimates of 
smoothed means are calculated for each possible smoothing scenario.  Like the weight pooling method, the final 
estimate is a weighted average across means for all possible pooling scenarios, where each mean estimate is 
“weighted” by the probability than the smoothing scenario is “correct.”  Using their proposed prior produces a 
posterior distribution that does not have a closed-form estimate like (9), but the model is more flexible.  Elliott 
(2007) extends weight smoothing models to estimate the parameters in linear and generalized linear models.  Elliott 
(2008) extends model (7) for linear regression, allows pooling all conterminous strata (which extends model-
robustness and prevents over-pooling), and uses a fractional Bayes factor prior to compare two weight smoothing 
models (which increases efficiency).  Elliott (2009) extends this method, using Laplace approximations to draw 
from the posterior distribution and estimate generalized linear model parameters.  Elliott and Little (2000) also show 
that a semi-parametric penalized spline produces estimators of means that are more robust under model 
misspecification related to the necessity of pooling.  
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Superpopulation Model Prediction Approaches 
 
Here we describe the other model-based approach in survey inference, other than the Bayesian approach.  This 
approach involves assuming that the population survey response variables Y  are a random sample from a larger 
(“super”) population and assigned a probability distribution ( )P Y θ  with parameters θ .  Typically the Best Linear 
Unbiased Prediction (BLUP, e.g., Royall 1976) method is used to estimate the model parameters.  The theoretical 
justification for this is described next.  Here, for observation i , we assume that the population values of Y  follow 
the model 
 ( ) ( ) 2,T

M i i i M i i iE y Var y Dσ= =X X β X ,       (10) 

where iX  denotes a p -vector  of benchmark auxiliary variables for unit i , which is known for all population units.  
A full model-based approach uses the BLUP method to estimate the parameter β  (Royall 1976).  The BLUP-based 
estimator of a finite population total is the sum of the observed sample units’ total plus the sum of predicted values 
for the non-sample units, denoted by r : 

ˆˆ T
BLUP i ii s i rT y∈ ∈= +∑ ∑ X β .        (11) 

Valliant et al. (2000) demonstrate that, when the corresponding model holds, estimator (11) is the best estimator of 
the total.  However, when the model does not hold, model-misspecification related bias is introduced.  Note that 
estimator (11) is also variable-specific; a separate model must be formulated for each y -variable of interest.  In 
addition, the resulting BLUP-based weights for a particular sample unit can be negative or less than one, which is 
undesirable from a design-based perspective.   
 
When ix  is a scalar, every design- and model-based estimator can be written in a form resembling (11) using the 
following expression (p. 26 in Valliant et al. 2000): 

ˆ
ˆ ii s

i ii s i r
ii r

T y
T y x

x
∈

∈ ∈
∈

⎡ ⎤−
⎢ ⎥= +
⎢ ⎥⎣ ⎦

∑∑ ∑∑
.       (12) 

Alternatively, we can write (12) as 
( )ˆ ˆ 1i i i i ii s i r i s i sT y y y w y∈ ∈ ∈ ∈= + = + −∑ ∑ ∑ ∑ ,      (13) 

where the component ( )1i ii s w y∈ −∑  is an estimator of the term ii r y∈∑ .  All subsequent estimators can be 
written in these forms.  Both (12) and (13) can be used to explicitly define the associated case weights.  In general, 
for ( )1, , T

Ny y=Y …  denoting the vector of population y -values, since the total is a linear combination of Y , we 

can write TT = γ Y , where 1iγ = .  We partition both components into the sample and non-sample values, 

( ),T T
s r=Y y y  and ( ),T T

s r=γ γ γ .  The population total is then T T
s s r rT = +γ y γ y .  If we denote the linear estimator 

as ˆ T
s sT = w y , where ( )1, , T

s nw w=w …  is a n -vector of coefficients,  the estimator error in T̂  is 

 ( )ˆ T T T T T
s s s s r r s r rT T− = − + = −w y γ y γ y a y γ y ,      (14) 

where s s=a w γ .  The term T
sa y  in (14) is known from the sample, but T

r rγ y  must be predicted using the model 
parameters estimated from the sample and the x -values in the population that are not in the sample.  Thus, we 

similarly partition the population covariates s

r

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

X
x

X
, where sX  is the n p×  matrix and rX  is ( )N n p− × , and 

variances ss sr

rs rr

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

V V
V

V V
, where ssV  is n n× , rrV  is ( ) ( )N n N n− × − , srV  is ( )n N n× − , and T

rs sr=V V .  

Then, under the general prediction theorem (Thm. 2.2.1 in Valliant et al. 2000), the optimal estimator of a total is 

 ( )( )1ˆ ˆˆ T T T T
opt s s r r rs ss s sT −= + + −γ y γ X β V V y X β ,      (15) 

where ( ) 11 1ˆ T T
s ss s s ss s

−− −=β X V X X V y .  Using Lagrange multipliers, Valliant et al. (2000) obtain the optimal value of 
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a  as ( )1 1 1T T
opt ss sr s s r s ss sr r

− − −⎡ ⎤= + −⎢ ⎥⎣ ⎦
a V V X A X X V V γ , where 1T

s s ss s
−=A X V X .  This leads to the optimal vector of 

BLUP coefficients s opt s= +w a γ , where the i th component is the “weight” on sample unit i .  This weight 

depends on the regression component of the model ( )ME Y , the variance ( )MVar Y , and how the sample and non-
sample units are designated.  In general, the case weights for a total are 

( )1 1 1T T
s ss sr s s r s ss sr r s

− − −⎡ ⎤= + − +⎢ ⎥⎣ ⎦
w V V X A X X V V 1 1 , where ,s r1 1  are 1n×  and ( ) 1N n− ×  vectors of units with 

elements that are all 1’s, respectively.  For the total under the general linear model with constant variance, this 

expression reduces to ( ) 1T T
s s s s r r s

−
= +w X X X X 1 1 . 

 
In the remainder of this section, we provide examples of simple BLUP-based estimators of totals and the associated 
case weights, as well as more robust alternatives that have been proposed in the related literature. 
 

Simple Model-based Weight Examples 
 

Example 12. HT Estimator, simple random sampling.  In simple random sampling, where iw N n=  and the model 

is ( )ind 2, ~ 0,i i i iy X e eμ σ= + , ( )ĤT i si sT y N n y∈= + −∑ .  In this case, every unit in the population but not in the 

sample is predicted with the same value, the sample mean 1
s ii sy n y−

∈= ∑ .  We also see how the HT estimator 
does not incorporate any auxiliary information when formulated this way, which corresponds to a very simple 
model. .  
 
Example 13. Ratio Estimator, simple random sampling. For a single auxiliary variable iX , suppose the true model 

is the ratio model, ( )2, ~ 0,i i i i i iy X X e e Xβ σ= + , or a regression through the origin with a variance proportional 

to iX .  The optimal estimator associated with this model is the ratio estimator R̂T NyX x=  for ,y x  denoting the 
sample means and X  the population mean.  The ratio estimator has the equivalent form to (13) as 

ˆ
R̂ i i i i i U s si s i r i U i s i sT y X X y X NX y Xβ∈ ∈ ∈ ∈ ∈= + = =∑ ∑ ∑ ∑ ∑ , where s ii sX X n∈= ∑ , 

U ii UX X N∈=∑ , and the weights are the same for all units, i.e., i U sw NX nX= . .  
 
Example 14. Simple Linear Regression Estimator, simple random sampling. Here the model for the regression 

estimator is ( )ind 2
0 1 , ~ 0,i i i i iy X X e eβ β σ= + + , ( )1̂R̂EG i U si sT y NX nXβ∈= + −∑ , where 

( )( ) ( )21̂ i s i s i si s i sy y X X X Xβ ∈ ∈= − − −∑ ∑ . The weights here are 

( )( ) ( )21i U s i s i si s
Nw n X X X X X X
n ∈
⎡ ⎤= + − − −⎢ ⎥⎣ ⎦∑ . .  

 
Robust Model-based Weight Examples 
 

Since the efficiencies of the simple methods in Ex. 13-14 depend on how well the associated model holds, these 
methods can be susceptible to model misspecification.  When comparing a set of candidate weights to a preferable 
set of weights, the difference in the estimated totals under the “preferable” model attributed to model 
misspecification is a measure of design-based inefficiency or model bias.  To overcome the bias, the 
superpopulation literature has developed a few robust alternatives, with examples given here.  Generally, each 
approach involves using the preferable alternative model to produce an adjustment factor that is added to the BLUP. 
 
Example 15. Dorfman’s Kernel Regression Method.  Dorfman (2000) proposed outlier-robust estimation of  β  in 
the BLUP estimator in (15) using kernel regression smoothing.  Suppose that the true model is 
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( )i i i i iy X m X v e= + , where ( )im X  is a smooth and (at least) twice-differentiable function.  For j r∈ , he 

proposed estimating ( )jm X  with ( )ˆ j ij ii sm X w y∈=∑ , where 1iji s w∈ =∑  and larger ijw ’s imply that ,iX i s∈  

is closer to ,jX j r∈ .  He proposed to use kernel regression smoothing to produce the weights 

( ) ( )ij b i j b i ji sw K X X K X X∈= − −∑ , where ( )K u  denotes a density function that is symmetric around zero, 

from which a family of densities is produced from using the scale transformation ( ) ( )1
bK u b K u b−= , and the scale 

b  is referred to as a “bandwidth.”  His nonparametric estimator for the finite population total is thus given by  
( ) ( )ˆ ˆ 1D i i i ij i i ii s i r i s i s j r i sT y m X y w y w y+∈ ∈ ∈ ∈ ∈ ∈= + = + = +∑ ∑ ∑ ∑ ∑ ∑ ,   (16) 

where i ijj rw w+ ∈= ∑ . Here the case weights are 1i iw w += + .  While Dorfman found this estimator can produce 

totals with lower MSE’s, it was sensitive to the choice of bandwidth.  When iX  is categorical, this method is not 
appropriate since there is not a range of iX  over which to smooth. .  
 
Example 16. Chambers et al.’s NP Calibration Method.  Chambers et al. (1993) proposed an alternative to 
Dorfman’s kernel regression approach (Ex. 15) that applies a model-bias correction factor to linear regression case 
weights.  This bias correction factor is produced using a nonparametric smoothing of the linear model residuals 
against frame variables known for all population units is applied to the BLUP estimator (15).  Suppose that the true 
model is ( )i i i i iy m v e= +X X , with working model variance ( ) 2

i i iVar y Dσ=X , where iD  is a measure of size 
for population unit i .  If the BLUP estimator was used to estimate the finite population total, then the model bias in 
the total is ( ) ( )ˆ

M BLUP ii rE T T δ∈− = ∑ X , where ( ) ( ) ( )ˆT
i i M iE mδ = −X x β X .  Since the residual ˆˆ T

i i ie y= −X β  

is an unbiased estimator of ( )iδ− X , they used sample-based residuals to estimate the nonsample ( )iδ X  values.  
This produced the nonparametric calibration estimator for the finite population, given by  

( )1
ˆ ˆˆ ˆˆT

C i i i BLUP ii s i r i s i sT y e T δ∈ ∈ ∈ ∈= + − = +∑ ∑ ∑ ∑X β X ,     (17) 

Here, the associated case weights are ( ) 1T T
s s s s r r s s

−
= + +w X X X X 1 1 m , where sm  contains the residual-based 

estimates of ( )iδ X . .  
 
Example 17. Chambers’ Ridge Regression Method.  Chambers (1996) proposed an alternative outlier-robust 
estimation of  β  in the BLUP estimator in (15) using a GREG-type approach.  He proposes to find the sets of 
weights w  that minimize a λ -scaled, cost-ridged loss function 

 ( ) ( )( ) ( )22 1
1

ˆ, ,
j j

p
i i i i j x xi s jQ w g g cλ λ−∈ == Ω − + −∑ ∑ wΩ g c T T ,    (18)  

where iΩ  and ig  are both pre-specified terms (e.g., i iDΩ =  and 1ig =  for the BLUP), iw  is the original weight,  

and ( ) , 1, ,jdiag c j p= =c …  is a vector of prespecified non-negative constants representing the cost of the case 

weighted estimator not satisfying the calibration constraint ˆ
j jx x−wT T , where ˆ

jx i iji s w x∈= ∑wT , ˆ
jx iji U x∈= ∑T  

is the population total of variable j , and λ  is a user-specified scale function.  Minimizing (18) produces the ridge-
regression weights: 

 ( ) ( )11 1 1 ˆ
j j

T
s s s s s s x xλ λ

−− − −= + + −ww g A X c X A X T T ,     (19) 

where xT  is the vector of population totals and sA  is the diagonal variance matrix with i th diagonal element 
1

i ig−Ω  (e.g., ( )s idiag D=A  for Chambers’ BLUP).  Chambers showed how 0λ =  reduces expression (19) to the 
calibration weights and 0λ >  produces weights that produce estimators that are biased, but have lower variance.  
The population total is estimated by 

2
ˆˆ T

C i ii s i rT y λ∈ ∈= +∑ ∑ X β ,        (20) 
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where ˆ
λβ  is the ridge-weighted estimator of β  using the weights (19) and the linear model ( ) T

ME =Y X β . .  
 
Example 18. Chambers’ NP Bias Correction Ridge Regression Method.  Chambers (1996) also proposed a 
nonparametric approach to obtaining the ridge regression weights.  His NP version of the weights (21) is 

 ( ) ( )11 1 1
,

T T T
m s s s s s s s x s s s sλ λ

−− − −= + + + − −w 1 m A X c X A X T X 1 X m ,    (22) 

where s1  is a vector of 1’s of length n  and sm  the NP-corrected weights (e.g., the kernel-smoothing weights in Ex. 
2.4).  The (22) weights depend on the choice of λ  and choices related to how the NP weights are constructed.  For 
example, using the kernel smoothing-based weights (Ex. 15), the weights in (22) depend on the bandwidths of the 
kernel smoother, which is a separate choice from determining λ .  He also recommends choosing λ  such that all 
weights , 1mλ ≥w .  Assuming that the ridge estimator model is correct, but the BLUP model was used to estimate 
the total, he incorporates a bias correction factor into his ridge estimator:  

( ) ( )3 2
ˆ ˆ ˆˆ ˆT T T

C i i i i i C i i ii s i r i s i sT y m y T m yλ λ λ∈ ∈ ∈ ∈= + + − = + −∑ ∑ ∑ ∑X β X β X β ,  (23) 

where ˆ
λβ  is the ridge-weighted estimator β  (estimated using the weights (22) and linear model T=Y X β ) and 

( )ˆT
i i im y λ− x β  are the nonparametric predicted estimates obtained by summing the contributions of unit i  to the 

NP prediction of the linear model residual, calculated for all N n−  units in r .  The case weights applied to each iy  
are given in expression (22). .  
 
Example 19. Firth and Bennett’s Method.  Firth and Bennett (1998) produce a similar bias-correction factor to 
Chambers et al. (1993, see Ex. 15) for a difference estimator (Särndal et al. 1992) as follows: 

( )( )ˆˆ ˆ 1 T
D BLUP i i ii sT T w y∈= + − −∑ x β .       (24) 

The associated weights are ( )1 1 1T T
s ss sr s s r s ss sr r s s

− − −⎡ ⎤= + − + +⎢ ⎥⎣ ⎦
w V V X A X X V V 1 1 m , where sm  contains the 

residual-based estimates of ( )( )ˆ1 T
i i iw y− − x β , and iw  are the original BLUP weights.  Firth and Bennett also 

define the internal bias calibration property to hold when ( )ˆ 0T
i i ii s w y∈ − =∑ x β , for all s  under the given sample 

design.  They also provide examples of when this property holds, e.g., using generalized linear models with a 
canonical link function to predict ˆT

ix β  and incorporating the survey weights in the estimating equations for the 
model parameters or the regression model. .  
 
As shown in the preceding examples, the superpopulation inference approach can indirectly induce weight trimming 
by producing estimators that take advantage of an underlying model relationship, but they have not been directly 
developed specifically for this purpose.  The main advantage to the model-based approach is that when the 
underlying superpopulation model holds, estimators of totals have a lower MSE due to a decrease in variance and no 
bias.  Examples 15 through 19 illustrate solutions to problems of model misspecification and robustness to extreme 
values.  However, this has not been developed for weight trimming models.  When the assumed underlying model 
does not hold, the bias of the estimates increases and can offset the MSE gains achieved by having lower variances.  
It is also necessary to postulate and validate a model for each variable of interest, which leads to variable-specific 
estimators.  This can be practically inconvenient when analyzing many variables. 
 
Generalized Design-Based Method 
 
A recently developed weight trimming approach uses a model to trim large weights on highly influential or outlier 
observations.  This method was first formulated in a Bayesian framework by Sverchkov and Pfeffermann (2004); 
independently Beaumont and Alavi (2004) propose a similar method by extending bounded calibration (e.g., Singh 
and Mohl 1996) to improve the efficiency and MSE of the general regression estimator.  These articles separately 
examine specific examples of models; the general framework and theory for estimating finite population totals was 
developed later by Beaumont (2008).  For applications, Beaumont and Rivest (2009) use an analysis-of-variance 
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model for “stratum jumpers,” units that received incorrect base weights due to incorrect information at the time of 
sample selection.  Beaumont and Rivest (2009) describe this method as a general approach for handling outliers in 
survey data. 
 
Before introducing this method, we provide a general discussion on the approach and introduce the notation.  
Generally, within a given observed sample, we fit a model between the weights and the survey response variables.  
The weights predicted from the model then replace the weights and estimate the total.  The hope is that using 
regression predictions of the weights will eliminate extreme weights.  The underlying theory uses the properties of 
the model with respect to the weights; this is very different from conventional “model-based” approaches (i.e., the 
Bayesian modeling and superpopulation modeling approaches), where the properties are with respect to a model fit 
to the survey variable. 
 
For the notation, denote M  as the model proposed for the weights, and π  the design used to select the sample.  The 
model M trims weights by removing variability in them.  This is different from the other model-based approaches, 
where the model describes the relationships between a survey response variable and a set of auxiliary variables.  In 
the generalized design-based approach, only one model is fit and one set of smoothed weights is produced for all 
variables.  Denote ( )1, , T

NI I=I …  as the vector of sample inclusion indicators, i.e., iI  is 1 if unit i  is in the 

sample, 0 otherwise, and ( )1, , T
Ny y=Y …  the values of the survey response variable y .  Generalized design-

based inference is defined as “any inference that is conditional on Y  but not I ” (p. 540 in Beaumont 2008).  
Noninformative probability sampling is assumed, such that ( ) ( ),p p=I Z Y I Z .  For inferential purposes, we also 

consider ( )1, , T
Nz z=Z … , the vector of design-variables, and ( )i i i=H H y , a vector of specified functions of 

different y -values for unit i .  Beaumont (2008) makes specific inferences (i.e., taking expectations) with respect to 
the joint distribution of Z  and I , conditional on Y , denoted by ,FZ I Y .  Despite confusing notation, I  is thus the 

only random quantity (not Z ).  In order to evaluate the estimators with respect to both the sample design and the 
model for the weights, denote such expectations by ( )F ME E Eπ= ⎡ ⎤⎣ ⎦i  or ( )F ME E Eπ= ⎡ ⎤⎣ ⎦i , where the ME  

denotes expectation with respect to the model for the weights.  In the simple case of one design variable iz  and one 

response variable iy , we denote the smoothed weight by ( ), ,i M i i i iw E w I z y=� . 
 
By definition, ĤT i ii sT w y∈= ∑ , where 1

i iw π −= , is the HT estimator in (1).  For particular single-stage sample 
designs, such as probability proportional to size sampling, this weight can vary considerably due to varying selection 
probabilities and result in a few extreme outliers.  The Beaumont (2008) estimator, proposed to reduce the 
variability in the iw ’s, replaces them with their expected value under the weights model: 

( ) ( )ˆ , ,B M HT M i i i ii s i sT E T E w y w y∈ ∈= = =∑ ∑I Y I Y� � .  Beaumont (2008) gave two examples for the model M , 

the linear and exponential model.  Examples for our simple one-survey variable model (Beaumont provides 
equivalent expressions for multiple y -variables) are given next. 

Example 20. Linear model. ( ) 1 2, T
M i i iiE w v ε= +I Y H β , where iH  and 0iv >  are known functions of iy , the 

errors are ( )i.i.d. 2~ 0,iε σ , and 2,σβ  are unknown model parameters.  This model produces the smoothed weight 

ˆˆ T
i iw = H β , where β̂  is the generalized LS estimate of β . .  

 
Example 21. Exponential model. ( ) ( )1 2, 1 exp T

M i i iiE w v ε= + +I Y H β , where iH , iv , iε , β , and 2σ  are given in 

Ex. 21.  The exponential model produces the smoothed weight ( ) ( )1 2ˆ ˆˆ 1 exp expT
i i iii sw v nε∈= + ∑H β , where 

( ) 1 2ˆˆ log 1 T
i i i iw vε −⎡ ⎤= − −⎣ ⎦H β . .  
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Since ( ),i M iw E w= I Y�  is unknown, it is estimated with ˆ iw , found by fitting a model to the sample data.  The 

estimator for the finite population total is then ˆ ˆB i ii sT w y∈=∑ .  If the weights model is correct, then 

( ) ( )ˆ ˆM B M i i i i Bi s i sE T E w y w y T∈ ∈= = =∑ ∑Y Y �� .   

 
Beaumont (2008) demonstrates that several properties hold under the generalized design-based approach.  First, the 
HT estimator is always unbiased across the weights model and sample designs.  Also, if the model for the weights is 
correct, then the Beaumont estimator is also unbiased.  However, the Beaumont estimator is biased when the 
weights model does not hold.  Third, under relaxed assumptions, Beaumont (2008) also showed that his estimator is 
also consistent. 
 
Model-Assisted Weighting Methods  
 
Here two model-assisted approaches are discussed: the generalized regression estimator and a penalized spline 
estimator.  Both methods are forms of calibration estimators.  In calibration (see Ex. 4), we incorporate an 
underlying model for the survey and auxiliary variables and evaluate estimators with respect to their design-based 
properties. 
 
Example 22. GREG estimator. As described in Example 4, specifying alternative distance functions in the 
calibration equations produces alternative estimators.  A linear distance function produces the general regression 
estimator (GREG) ( )ˆ ˆ ˆ ˆT

GREG HT X XHT i i ii sT T g y π∈= + − = ∑B T T , where ˆ
XHT i i i ii s i sw π∈ ∈= =∑ ∑T x x  is 

the vector of Horvitz-Thompson totals for the auxiliary variables, 1
N

X ii== ∑T x  is the corresponding vector of 

known totals, 1 1 1ˆ T T
s s ss s s
− − −=B A X V Π y , with  1 1T

s s ss s s
− −=A X V Π X , T

sX  is the matrix of ix  values in the sample, 

( )ss idiag v=V  is the diagonal of the variance matrix specified under the model, and ( )s idiag π=Π  is the 
diagonal matrix of the probabilities of selection for the sample units.  In the second expression for the GREG 

estimator, ( ) 1 1ˆ1
T

i X XHT s i ig v− −= + −T T A x  is called the “g-weight.” 

 
The GREG estimator for a total is model-unbiased under the associated working model and is approximately design-
unbiased when the sample size is large (Deville and Särndal 1992).  When the model is correct, the GREG estimator 
achieves efficiency gains; if the model is incorrect, then the efficiency gains will be dampened (or nonexistent) but 
the approximate design-unbiased property still holds.  One disadvantage to the GREG approach is that the resulting 
weights can be negative or less than one.  Calibration can also introduce considerable variation in the survey 
weights.  To overcome the first problem, extensions to limit the range of calibration weights have been developed 
that involve either using a bounded distance function (Rao and Singh 1999; Singh and Mohl 1996; Théberge 1999) 
or bounding the range of the weights using an optimization method (such as quadratic programming, Isaki et al. 
1992).  Chambers (1996) proposed penalized calibration optimization function to produce non-negative weights and 
methods that impose additional constraints on the calibration equations. .  
 
Recent survey methodology research has focused on a class of estimators based on penalized (p-) spline regression 
to estimate finite population parameters (Zheng and Little 2003, 2005; Chen et. al 2009; Breidt et al. 2005; 
Krivobokova et al. 2008; Claeskens et. al 2009).  Separately, Eilers and Marx (1996) introduced penalized spline 
estimators; Ruppert et al. (2003), Ruppert and Carroll (2000), and Wand (2003) developed them further 
theoretically.  Breidt et al. (2005) develop a model-assisted p-spline estimator similar to the GREG estimator.  In 
application, they showed their p-spline estimator is more efficient than parametric GREG estimators when the 
parametric model is misspecified, but the p-spline estimator is approximately as efficient when the parametric 
specification is correct.  However, this method applies only for quantitative covariates. 
 
Breidt et al. (2005) convert the Ruppert et al. (2003) model into finite population sampling by assuming that 
quantitative auxiliary variables ix  are available and known for all population units.  The details related to Ex. 23 are 
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described here.  They propose the following superpopulation regression model: ( ) ( )( )
ind

, ~ 0,i i i i iy m x N v xε ε= + .  

Treating ( ){ }, :i ix y i U∈  as one realization from this model, the p-spline function using a linear combination of 

truncated polynomials is ( ) ( )0 1 1, , 1, ,
pQp

p q p qqm x x x x i Nβ β β β κ+= +
= + + + − =∑β " … , where the constants 

1 Lκ κ< <…  are fixed “knots,” and the term ( )p pu u+ =  if 0u >  and zero, otherwise, p  is the degree of the spline, 

and ( )0 , ,
T

p Qβ β +=β …  is the coefficient vector.  The splines here are piecewise polynomial functions that are 

smoothed to a certain degree, and can be expressed as a linear combination of a set of basis functions defined with 
respect to the number of knots.  The truncated polynomial version shown is often chosen for its simplicity over other 
alternatives (e.g., B-splines, as used in Eilers and Marx 1996).  Zheng and Little (2003) adjusted the superpopulation 
model to produce a p-spline estimator that accounts for the effect of non-ignorable design weights: 

( ) ( )ind 2 2, , ~ 0, k
i i i i iy m Nπ ε ε π σ= +β , where the constant 0k ≥  reflects knowledge of the error variance 

heteroskedasticity and ( ) ( )0 1 1, , 1, ,
pp Qj

i j q p i qij qm i Nπ β β π β π κ+= = +
= + + − =∑ ∑β …  is the spline function.   

 
Ruppert (2002) and Ruppert et al. (2003) recommend using a relatively large number of knots (15 to 30) at pre-
specified locations, such that the smoothing is achieved by treating the parameters 1, ,p p Qβ β+ +…  as random effects 

centered at zero.  Otherwise, using a least-squares approach to estimate 1, ,p p Qβ β+ +…  can result in over-fitting the 
model.  While knot selection methods exist (Friedman and Silverman 1989; Friedman 1991; Green 1995; Stone et 
al. 1997; Denison et al. 1998), in penalized (p)-spline regression the number of knots is large, but their influence is 
bounded using a constraint on the Q  spline coefficients.  One such constraint with the truncated polynomial model 

is to bound 2
1

Q
q pq β +=∑  by some constant, while leaving the polynomial coefficients 0 , , pβ β…  unconstrained.  

This smoothes the 1, ,p p Qβ β+ +…  estimates toward zero.  Adding the constraint as a Lagrange multiplier, denoted 

by α , in the least squares equation gives ( )( )2 2
1

ˆ arg min , Q
i i q pi U qy m α β +∈ == − +∑ ∑ββ x β  for a fixed constant 

0α ≥ .  The smoothing of the resulting fit depends on α ; larger values produce smoother fits.   
 
We can also see how the proposed p-spline estimators are special forms of the model-based difference estimator 
(Ex. 19) by summarizing them in the following two examples. 
 
Example 23. Zheng and Little’s Bayesian P-splines.  Zheng and Little (2003) recognized that treating the 

1, ,p p Qβ β+ +…  as random effects, given the penalty 2
1

Q
q pqα β +=∑ , is equivalent to using a multivariate normal 

prior ( )2, , ~ 0,p q p Q L QNβ β τ+ + I… , where 2 2τ σ α=   is an additional parameter estimated from the data and QI  

is a Q Q×  identity matrix.  Their estimator for the total is  

*1ˆˆ 1 jT T
psp i i psp j s i i i ii s i r i s j U i si j

I
T y e y w y

π π∈ ∈ ∈ ∈ ∈

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= + = + − =

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑ ∑ ∑ ∑x β Π g , (25) 

where the covariate matrix X  involved powers and knots of the probabilities of selection, *
iw  is defined by the last 

equality in (25),
 

1ˆ ˆT T
psp s s s s sα

−
⎡ ⎤= + =⎣ ⎦β Π W Π D Π W y g y , 1jI =  if j s∈  and zero otherwise, 

( )ˆˆ , ,i i pspm m i s= ∈x β , ˆT
i i i pspe y= − x β , and fixed α . The case weights are *

iw . . 
 
Example 24. Model-Assisted P-splines. For ( ), ,i i Um m i U= ∈x β  denoting the p-spline fit obtained from the 
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hypothetical population fit at ix ,  Breidt et al. (2005) incorporate im  into survey estimation by using a difference 
estimator ( )i i i ii U i sm y m π∈ ∈+ −∑ ∑ . Given a sample, im  here can be estimated using a sample-based estimator 

ˆ im .  For ( )1 ,idiag i Uπ= ∈W  and ( )1 ,s idiag i sπ= ∈W  as the matrices of the HT weights in the population 
and sample, for fixed α , the π -weighted estimator for the p-spline model coefficients is 

( ) 1ˆ T T
s s s s s s sπ α α

−
= + =β X W X D X W y G y , such that ( )ˆˆ ,i im m π= x β .  Their model-assisted estimator is then 

 *ˆ 1ˆ ˆ 1 j Ti i
mpsp i j i i i ii U i s i s j U i s

i i j

Iy m
T m e y w yαπ π π∈ ∈ ∈ ∈ ∈

⎡ ⎤⎛ ⎞−
⎢ ⎥= + + − =⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∑ ∑ ∑ ∑x G� , (26) 

where 1jI =  if j s∈  and zero otherwise and  ˆT
i i ie y π= − x β . From (26), their p-spline estimator is a linear 

estimator.  The case weights here are *
iw  in (26).  Chambers’ ridge regression estimator in (20) has a similar form, 

with ridge matrix ( )1, , pdiag α α… , where 0iα =  for covariates corresponding to the calibration constraints that 

must be met. . 
 
Breidt et. al (2005) also showed that m̂pspT  shares many of the desirable properties of the GREG estimator.  
However, since it uses a more flexible model, the p-spline estimator (26) had improved efficiency over the GREG 
when the linear model did not hold. However, these methods also generally work well when there are quantitative 
auxiliary variables, as opposed to categorical, which have to be available for all of the population units.  This may 
not hold well for some household surveys, where there is limited information aside from population counts by 
various categories. 
 
Discussion: Implications for Inference and Practice  
 
The goal behind all of the methods that we have summarized is to somehow make inferences robust to anomalous 
values of weights or y’s or both.  There are many variations on how this can be attempted.  Among them are: 
 

- Smooth or trim the weights; 
- Smooth or trim the y’s; 
- Use nonparametric estimators that are minimally affected by outlying weights, y’s, or combinations of 

the two. 
 
In some cases, explicit formulas for weights are obtained; in others the smoothing must be done using iterative 
methods that give only implicit sets of weights.  Practitioners fighting deadlines gravitate toward methods where 
weights are trimmed or smoothed without consideration of the analysis variables with which the weights will be 
used.  This is pragmatic because the process of weight computation often proceeds on a parallel track from the 
editing of the analytic variables.  However, the weight-trimming approach can be inefficient for some variables.  If 
an outlying iy  or i iw y  product causes an estimator to have an unnecessarily large variance, weight trimming alone 
may not correct the problem.  Plus, values of weights or y’s that are innocuous for full population estimates may be 
quite influential for some domain estimates. The pros and cons of the different approaches are summarized below. 
 
As Examples 1-9 illustrate, design-based weight adjustment methods vary widely.  Most are simple to understand 
relative to the model-based approaches and implement in practice.  All methods aim to change the most extreme 
weight values to make the largest reduction in the variance such that the overall MSE of an estimator is reduced.  
However, these methods are ad hoc, data-driven, and estimator-driven, so one method that works well in a particular 
sample may not work in other samples.  Practitioners do not accept any one method as being the standard. 
Redistribution also requires careful judgment by the weight trimmer (Kish 1990).  The empirical MSE method is the 
most theoretical method – from a design-based perspective – but it is also variable-dependent.  To produce one set 
of weights for multiple variables in practice, some ad hoc compromise – like Potter’s average MSE across variables 
(Ex. 7) – must be used.  In addition, the sample at hand may not produce very accurate estimates of the MSE or the 
weights’ distribution function. 
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Alternatively, methods that incorporate realistic models will improve the estimates of totals. By incorporating the 
relationship between the survey variable and some known auxiliary information, estimates of totals can have lower 
mean square errors.  When the model is correctly specified, the associated estimators are optimal (e.g., the BLUP in 
Valliant et. al 2000). However, when the model does not hold or the sample contains outliers, several robust 
alternative estimators have been developed. 
 
Bayesian methods that pool or group data together have been recently proposed for weight trimming.  There are two 
complementary approaches: “weight pooling” and “weight smoothing.”  While both use models and appear similar, 
weight pooling is the Bayesian extension of design-based trimming, but weight smoothing is the Bayesian extension 
of classical random effect smoothing.  In weight pooling models, cases are grouped into strata, some of which are 
collapsed into groups, and the group weight replaces the original weights.  In weight smoothing, a model that treats 
the group means as random effects smoothes the survey response values.  In this approach, the influence of large 
weights on the estimated mean and its variance is reduced under the smoothing model.  In both methods, Bayesian 
models are used to average the means across all possible trimming points, which are obtained by varying the 
smoothing cut point.  Both methods can produce variable-dependent weights.  Neither weight pooling nor weight 
smoothing incorporates auxiliary variables other than indicators for stratum membership.  
 
The Bayesian trimming procedures are a theoretical breakthrough for weight trimming.  They lay the foundation for 
forms of estimation that adapt to the sample configuration of the weights and the analysis variables.  They account 
for realized survey response values by making posterior distribution estimates that are conditional on the observed 
sample data.  Their main advantage here is that, when the underlying model holds, the resulting trimmed weights 
produce point estimates with lower MSE due to a decrease in variance that is larger than the increase in squared bias 
(Little 2004).  Elliott and Little (2000) and Elliott (2007, 2008, 2009) demonstrate empirically with simulations and 
case studies that their methods can potentially increase efficiency under repeated sampling and decrease the MSE.  
Other work by Zheng and Little (2003, 2005) showed that p-spline estimation can produce results that are more 
robust when the Bayesian model does not hold, without much loss of efficiency.  That research applies only to the 
case of having quantitative auxiliary variables for use in estimation.  
 
From the traditional point-of-view, a drawback to the Bayesian method is that the smoothing occurs for a particular 
set of circumstances: weighting adjustments performed within  strata, under noninformative and equal probability 
sampling, and for one estimation purpose (e.g., means, regression coefficients, etc.) of a small number of (often one) 
variables of interest.  For model-based methods, in general, it is necessary to propose and validate a model for each 
variable of interest, which may then lead to variable-specific sets of weights.  One might view this as a strength 
because it makes the statistician think more deeply about what needs to be done. On the other hand, although model-
based approaches may be statistically efficient, they may be practically inconvenient when there are many variables 
of interest.  The presence of variable-dependent weights on a public use file is potentially confusing to data users, 
particularly when they conduct multivariate analyses on the data.  However, the MSE-minimization benefit of the 
Bayesian method may outweigh these practical limitations for particular estimates that are of extreme importance.  
In some applications using quantitative auxiliaries, the simplicity and flexibility of penalized splines can improve 
the model robustness and may reduce the need for variable-dependent weights.  This method also requires the 
availability of quantitative auxiliary information; the p-spline methods do not apply to categorical and binary 
covariates. 
 
While the superpopulation model-based approaches (e.g., Chambers 1986, 1996; Chambers et al. 1993; Firth and 
Bennett 1998) introduce implicitly defined weights, their impact on estimation varies based on the method used.  For 
example, the “robust” alternative methods incorporate a residual-based adjustment to improve estimates of the finite 
population total by reducing the bias. These methods are able to handle both categorical and quantitative auxiliaries. 
As with the Bayesian approach, here the limitation is the existence of auxiliary information for all population units, 
as well as identifying an adequate model.  However, the superpopulation model-based approach has a means of 
expressing case weights in a standardized form, which is the first step towards developing diagnostic measures to 
gauge the impact of alternative weighting adjustments. 
 
The generalized design-based method (Beaumont 2008) smoothes weights by modeling them as functions of the y’s. 
The weight for each unit is then replaced by its regression prediction. Although the method may be an  improved 
weight trimming method in some applications, much of the associated theory and its effectiveness in practice need 
to be further studied.  While the variability in estimated totals may be reduced through a reduction of variance in the 
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weights, this method seems easy to misapply.   More extensive comparisons of the bias and mean square error of the 
Beaumont estimator with other alternatives are needed.  In addition,  this method modifies all survey weights 
(perhaps substantially), while the typical design-based approaches aim to make sizeable changes to only a small 
number of cases. The wholesale changing of all weights by the generalized design-based approach may damage 
some estimates for domains even if overall population estimates are improved. 
 
Generally, all weight trimming or modification methods have the potential to “undo” the effects of previous steps in 
weight calculation, like base weighting, nonresponse adjustment, and calibration to external controls.  Nonresponse 
and calibration adjustments are designed to reduce  biases and/or variances.  In some cases, variable weights can be 
more efficient and their beneficial bias/variance reductions could be needlessly removed through arbitrary trimming 
of large weights.  Thus, there is a need for diagnostic measures of the impact of weight trimming or modification on 
survey inference that extend past the existing “design effect” type of summary measures, most of which do not 
incorporate the survey variable of interest.  The current methods do not quantify such “loss of information;” i.e., 
there is no indication of how various methods’ distortion of the original weight distribution potentially impacts 
inference about full population or domain estimates.   
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