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Abstract 

Background 

Cluster randomized experiments that assign intact groups such as schools or school 

districts to treatment conditions are increasingly common in educational research.  Such 

experiments are inherently multilevel designs whose sensitivity (statistical power and 

precision of estimates) depends on the variance decomposition across levels.  This 

variance decomposition is usually summarized by the intraclass correlation structure and, 

if covariates are used, the effectiveness of the covariates in explaining variation at each 

level of the design.    

Objectives 

This paper provides a compilation of school and district level intraclass correlation values 

of academic achievement and related covariate effectiveness based on state longitudinal 

data systems.  These values are designed to be used for planning group-randomized 

experiments in education.  The use of these values to compute statistical power and plan 

2 and 3 level group randomized experiments is illustrated. 

Research Design 

We fit several hierarchical linear models to state data by grade and subject to estimate 

intraclass correlations and covariate effectiveness.  We then compare our average of state 

estimates with the national work by Hedges and Hedberg (2007).  
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A fundamental problem in education and other applied social sciences is 

determining the causal effects of interventions designed to improve educational or social 

conditions.  Randomized experiments are widely appreciated because they offer the 

strongest designs for making causal inferences about treatment effects (Mosteller and 

Boruch, 2002).  For this reason, randomized experiments have become much more 

frequently used in the last decade to evaluate educational interventions, products, and 

services.  The most common experimental designs in education have been designs that 

assign intact groups (such as classrooms, schools, or school districts) to treatment 

conditions.  These designs are called group or cluster randomized because the intact 

groups (e.g.,, schools or districts) can be considered statistical clusters. 

The sampling plans for cluster randomized experiments typically involve 

multistage cluster samples in which clusters (such as schools) are sampled, and then 

individuals are sampled within clusters.  In some cases there are three or four stages of 

sampling where school districts are sampled first, then schools within districts, then 

classrooms within schools, then individuals within classrooms.  Because cluster 

randomized experiments involve multistage sampling, it is often natural to think of them 

in terms of multilevel statistical models—as multilevel experiments.  

One aspect of planning experimental designs is assuring that the design has 

adequate sensitivity to detect the treatment effects of interest.  We use the word 

sensitivity to include the precision (standard error) of estimates of treatment effects, the 

statistical power to detect effects, and the minimum effect size that is detectable with a 

given level of certainty (the minimum detectable effect size).   The sensitivity of 

multilevel designs depends on the variance decomposition between and within schools 
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(Raudenbush 1997; Bloom, Bos et al. 1999; Bloom 2005; Konstantopoulos, 2009; 

Hedges and Rhoads 2011).  This variance decomposition is typically summarized by a 

system of intraclass correlation coefficients, which are the proportion of the total variance 

that occurs between units at various levels of the design.  For example, suppose there are 

three levels in the design (school districts as level 3, schools as level 2, and individuals 

within schools as level 1 and that districts will be assigned to treatments.  Then the 

variance decomposition determining statistical power could be summarized by a level 3 

(district level) intraclass correlation ρ3 that expresses the fraction of the total variation in 

the outcome that is between district means and a level 2 (school level) intraclass 

correlation ρ2 that expresses the fraction of the total variation in the outcome that is 

between school means but within districts.  The fraction of the total variation that is 

between individuals but within schools is the complement of ρ2 and ρ3, namely 

2 31ρ ρ ρ= − − . 

If the design uses covariates, the effectiveness of covariates in explaining 

variation (variance components) at different levels of the design also has an impact on the 

sensitivity of the design.  The effectiveness of covariates in explaining variance at each 

level of the design is often characterized by a measure of variance accounted for (an R2) 

at each level of the design.  For example if the three level design mentioned above used a 

pretest as a covariate at each level, the effectiveness of the pretest as a covariate would be 

characterized by three R2 values: R3
2, the variance in district (level 3) means that is 

explained by district mean pretest scores; R2
2, the variance in school (level 2) means 

within districts that is explained by school mean pretest scores; and R1
2, the variance in 

individual (level 1) scores within schools explained by individual pretest scores. 
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Because cluster randomized designs are inherently multilevel experiments, 

rational planning of sample sizes cluster randomized designs is more complex than 

planning sample sizes in single level experiments that randomize individuals within 

simple random samples.  For example, there are multiple components of the total sample 

size: one for each level of the design.  While decisions about sample size in one level 

designs involve determining a single number (total sample size) that yields a design with 

the required sensitivity, decisions about sample size in multilevel designs involve 

determining appropriate sample sizes at each of several levels.  In single level designs, a 

larger total sample size always leads to greater statistical power (all other things equal).  

However, the relationship between sample size and design sensitivity is not 

straightforward in multilevel designs.  Given the same total sample size, different 

allocations of sample sizes across levels can lead to very different statistical power and 

designs with smaller total sample size can have greater statistical power than other 

designs that have larger total sample size.   For this reason, so called optimal design or 

optimal allocation methods (which maximize precision or statistical power for a given 

cost function) are often used to assist in planning multilevel designs (see, e.g., 

Raudenbush, 1997; Konstantopoulos, 2009).  Optimal allocation depends on cost data, 

but also on the intraclass correlation structure and the effectiveness of covariates in 

explaining variation in the outcome variable at different levels of the design.   

Because intraclass correlation structure and covariate effectiveness is crucial in 

planning cluster randomized experiments, we refer to these values as design parameters.  

The purpose of this paper is to provide empirical evidence about design parameters that 
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can be used in the planning of two and three level cluster randomized experiments that 

use academic achievement as the outcome variable.  This paper is in the same spirit as 

Hedges and Hedberg, 2007) but instead of using data from national surveys as they did, 

this paper uses data from state longitudinal data systems to estimate design parameters 

and includes information on school districts as a level of analysis. 

 

The Present Study and Key Findings 

 Data from state longitudinal data systems in seven states was used to estimate 

parameters useful for designing two and three level cluster randomized trials.  We 

considered two cases.  In one case, school district is ignored in the design, there is one 

intraclass correlation that reflects total variation across schools, and between-district 

variation is pooled into between-school variation.   This might happen when the design 

calls for schools from several districts, there are few schools per district, and district is 

not used as a blocking factor.  In the second case, school district is explicitly included in 

the design as level of sampling.  This might occur if randomization to treatments 

occurred at the school district level or schools were randomized to treatments but districts 

were used as blocking factor assumed not to interact with treatments. 

In the first case (where district variation is pooled into between school variation) 

intraclass correlation estimates in grades 3 to 8 averaged about ρ = 0.20 in mathematics 

achievement and ρ = 0.17 in reading achievement, but there was considerable variation 

across states.  There was a slight trend for intraclass correlations to be larger at the higher 

grades (from ρ = 0.18 in grade 3 to ρ = 0.22 in grade 8 in reading and from ρ = 0.16 in 

grade 3 to ρ = 0.19 in grade 8 in mathematics achievement).  A pretest on academic 
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achievement was a substantially more effective covariate than demographic variables, 

explaining an average of R2
2 = 80% of the variation in mathematics achievement at level 

2 (the school level) and an average of R2
2 = 87% of the variance in reading achievement 

at level 2, while explaining an average of R1
2 = 64% of the variance in mathematics 

achievement at level 1 (the individual level) and an average of R1
2 = 57% of the variance 

in reading achievement at level 1.  As in the case of the intraclass correlations, there was 

considerable variation across states in the effectiveness of the covariates in explaining 

variation in reading and mathematics achievement.  As in the case of intraclass 

correlations, there is a tendency for the effectiveness of covariates to increase with grade 

level.  For example, the effectiveness of pretest in explaining level 2 variation in 

mathematics achievement increased from an average of R2
2 = 75% in grade 3 to an 

average of R2
2 = 88% in grade 8.  Similarly, the effectiveness of pretest in explaining 

level 1 variation in mathematics achievement increased from an average of R1
2 = 58% in 

grade 3 to an average of R1
2 = 68% in grade 8.  Variation across grades in the 

effectiveness of covariates in explaining reading achievement was similar to that in 

mathematics achievement.   

In the second case (where school districts are explicitly included in the design) 

there are two intraclasss correlations to be estimated, ρ3 at the school district level and ρ2 

at the school within-district level.   District level intraclass correlation estimates in grades 

3 to 8 averaged about ρ3 = 0.05 in both reading and mathematics achievement and there 

was little variation across either states or grade levels.  School within-district intraclass 

correlation estimates in grades 3 to 8 averaged about ρ2 = 0.13 in mathematics 

achievement and about ρ2 = 0.10 in reading achievement, but there was some variation 
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across states.  There was a slight trend for intraclass correlations to be larger at the higher 

grades (from ρ2 = 0.09 in grade 3 to ρ2 = 0.13 in grade 8 in reading and from ρ2 = 0.11 in 

grade 3 to ρ2 = 0.16 in grade 8 in mathematics achievement).  A pretest on academic 

achievement was a substantially more effective covariate than demographic variables, 

explaining an average of R3
2 = 84% of the variation in mathematics achievement at level 

2 and an average of R3
2 = 89% of the variance in reading at level 3, explaining an average 

of R2
2 = 72% of the variation in mathematics achievement at level 2 and an average of 

R2
2 = 81% of the variance in reading at level 2, while explaining an average of R1

2 = 64% 

of the variance in mathematics achievement at level 1 and R1
2 = 58% of the variance in 

reading at level 1.   The substantially smaller school level intraclass correlations within 

districts demonstrates the greater sensitivity of designs that might be carried out within a 

single school district or within a few districts in which it might be reasonable to expect no 

district by treatment interactions. 

Methods 

Data Sources 

The evidence reported in this paper was derived from the state longitudinal data 

systems in seven U.S. States: Arkansas, Arizona, Florida, Kentucky, Massachusetts, 

North Carolina, and Wisconsin.   Students were assessed in the spring using a different 

test in each state, namely the Augmented Benchmark Examination (Arkansas), Arizona’s 

Instrument to Measure Standards, the Florida Comprehensive Assessment Test, the 

Commonwealth Accountability Testing System (Kentucky), Massachusetts 

Comprehensive Assessment System, the North Carolina End of Grade Tests, and the 

Wisconsin Knowledge and Concepts Examination. These states are a subset of the states 
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we approached to be part of our study.   All data was from the 2009-2010 school year 

with the exception of Florida, which supplied data from the 2006-2007 school year.  

Data quality was assessed by comparing the number of students in our cleaned 

dataset to the number of students listed in the CCD.  Since our data was comprised of the 

number tested, and since No Child Left Behind (Bush 2001) requires only 95 percent 

participation, we allowed no more than a 5 percent deficit between our number of 

students and the CCD.  For this analysis, we removed students who were cognitively 

disabled at the time of assessment and those attending charter schools.  In many states, 

charter schools are their own district and so an estimation of the (between school within 

district) intraclass correlation is not possible.  Since many such districts would be 

removed a priori, we maintained comparability by removing all charter schools.  

 

Choices of Covariates 

It is often advantageous to use one or more covariates to improve design 

sensitivity.  Covariates chosen can be any variables that are correlated with the outcomes 

that cannot be influenced by the treatment, but the covariates usually used are pretests on 

the same construct as the outcome variable or demographic variables such as gender, 

race/ethnicity, indicators of socio-economic status (SES), and indicators of potential 

difficulty in school such as English language learner status.  We evaluated the 

effectiveness of three covariate models: one involving only a pretest on the outcome 

variable of interest, one involving only demographic variables, and one involving both a 

pretest and demographic variables.  The details of the analytic models are given in the 

appendix and the details of the covariate sets are given below.  
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The pretest covariate model. If pretest scores on achievement are available, they 

can be a powerful covariate and considerably increase the sensitivity of an experimental 

design.  The two-level pretest covariate model involves using the cluster-centered (school 

mean-centered) pretest score at the individual level and the school mean pretest score at 

the school level.  The three-level pretest covariate model involves using the subcluster-

centered (school mean-centered) pretest score at the individual level, the cluster-centered 

(school district mean-centered) school mean pretest score at the school level, and the 

school district mean at the school district level.   

The demographic covariates model.  Sometimes pretest scores are not available 

but other background information about individuals is available to serve as covariates.  

The demographic covariates model includes five covariates at each level.  At the 

individual-level, the covariates are dummy variables for male gender, for Black or 

Hispanic status, for eligibility for free or reduced price lunch as a proxy for 

socioeconomic status, and an indicator that the student is classified as an English 

language learner The two-level demographics covariate model involves using the cluster-

centered (school mean-centered) covariate score at the individual level and the school 

mean covariate score at the school level.  The three-level demographic covariate model 

involves using the subcluster-centered (school mean-centered) covariate score at the 

individual level, the cluster-centered (school district mean-centered) school mean 

covariate score at the school level, and the school district mean at the school district 

level.  We experimented with different centering techniques and confirmed that when 

group means are included the variance components did not change.  
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 The pretest and demographic covariates model. The pretest and demographic 

covariates model combines the use of an achievement pretest and demographic covariates 

at each level.  

Analysis Models  

 The data analysis was carried out using STATA version 12.1’s “XTMIXED” 

routine for mixed linear model analysis, with residual variance components estimated by 

restricted maximum likelihood.  For each sample and achievement domain, analyses were 

carried out based on four different models.  The first model, (the unconditional model) 

involved no covariates at any level.  The second model (the pretest covariate model) used 

a test on the same individuals in the same achievement domain one year earlier as a 

covariate.  The third model (the demographic covariates model) used dummy variables 

for male gender, Black or Hispanic race or ethnicity, free or reduced price lunch (as an 

indicator of socio-economic status, and limited English proficiency status.  The fourth 

model (the pretest and demographic covariates model) use both the covariates in the 

second and third models together.  We describe these explicitly in the Appendix using 

hierarchical linear model notation.  The standard errors of the intraclass correlations were 

computed using large sample results given in Hedges, Hedberg, and Kuyper (2012).  The 

standard errors of R2 values were computed from the large sample estimates of the 

variance of the squared multiple correlation,  

 { } ( )22 2
2

4 1
Var

R R
R

n
−

= , 

(see, e.g., Fisher, 1925/1990). 
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Results 

 We present results by first giving a summary of sample sizes.  Then we present 

estimates of design parameters when the between school district variance is pooled into 

the between school variance.  To produce tables of reasonable size we present results for 

grades 1 to 6 and grades 7 to 11 in separate tables.  Finally we present design parameters 

for three level analyses where between district and between school-within-district 

variance are considered separately. 

A summary of the sample sizes used in the analyses is given in Table 1.  The body 

of the table is organized into horizontal panels by grade where each row represents 

sample sizes for each state within the grade defined by the horizontal panel.  The table 

has three vertical panels for district, school, and student sample sizes.  The first, second, 

and third vertical panel shows that the data in each state are based on from 73 to 416 

school districts, 294 to 1,841 schools, and 29,882 to 160,821 students in each state.   

 

Insert Table 1 About Here 

 

Design Parameters Pooling Between-District into Between-School Variance  

 In this section we present design parameters that are appropriate when research 

designs will include schools from several districts, but there will be no attempt to use 

districts as blocking variables (essentially district dummy variables as covariates).  In 

such cases, the between-district variation is pooled into the between-school variation.  

The design parameters for mathematics achievement in grades 1 to 6 are given in Table 2 
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and the design parameters for reading achievement in grades 1 to 6 are given in Table 3.  

We do not report values of design parameters for the models including both pretest and 

demographic covariates because the demographic covariates generally differ very little 

from those based on pretest alone.  That is, the demographic covariates have little 

explanatory power beyond that of the pretest.  The structure of these tables is similar to 

that of Table 1 in that the tables are organized into horizontal panels by grade and each 

row represents information for each state within the grade defined by the horizontal 

panel.  The tables are organized into three vertical panels. The left hand panel gives the 

intraclass correlation (unadjusted for any covariates) and its standard error, the middle 

panel gives the R2 values reflecting the effectiveness of the pretest as a covariate at level 

2 and level 1 (along with their standard errors), and the right hand panel gives the gives 

the R2 values reflecting the effectiveness of the demographic variables as covariates at 

level 2 and level 1 (along with their standard errors).  Design parameters are reported for 

all grades included in the state longitudinal data.  In some cases (e.g., Grade 3 in Arizona 

or Grade 1 in Arkansas), design parameters corresponding to pretest as a covariate are 

missing because there was no assessment at an earlier grade to use as a pretest. 

 

Insert Tables 2 and 3 About Here 

 

The design parameters for mathematics achievement in grades 7 to 11 are given in 

Table 4 and the design parameters for reading achievement in grades 7 to 10 are given in 

Table 5.  These tables have the same format as Tables 2 and 3 but reflect different grade 

levels.  Tables 4 and 5 are somewhat sparser, which reflects state practices of less 
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frequent assessments at higher grade levels.  One striking feature of Table 4 is that some 

of the intraclass correlations in mathematics (e.g., in Florida) are large than at the lower 

grades.  Similarly, some of the intraclass correlations in reading (e.g., in Florida and 

Massachusetts) in Table 5 are also larger than at the lower grades.  These findings could 

have important implications for research design. 

 

Insert Tables 4 and 5 About Here 

 

Design Parameters Pooling Between District into Between School Variance  

In this section we present design parameters that are appropriate for designing 

two-level cluster randomized designs that will include only schools from a single school 

district.  The results in this section are also useful for evaluating the proportion of total 

variance across schools that is accounted for when district is used as a fixed blocking 

variable in a two level design that involves several districts, since the relevant R2 for the 

set of district dummy variables is R2
2 = ρ3/( ρ2 + ρ3).   Finally, the results in this section 

are appropriate for three level cluster randomized designs assigning school districts to 

treatments.  In such cases, the between district variation is pooled into the between school 

variation.  As in the previous section, we do not report values of design parameters for 

the models including both pretest and demographic covariates because the demographic 

covariates generally differ very little from those based on pretest alone.  That is, the 

demographic covariates have little explanatory power beyond that of the pretest.   

The design parameters for mathematics achievement in grades 1 to 6 are given in 

Table 6 and the design parameters for reading achievement in grades 1 to 6 are given in 
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Table 7.  The structure of these tables is similar to that of Tables 2 and 3 in that the tables 

are organized into horizontal panels by grade and each row represents information for 

each state within the grade defined by the horizontal panel and the tables are organized 

into three vertical panels. The left hand panel gives the intraclass correlations at level 3 

(district level) and 2 (school level), unadjusted for any covariates and their standard 

errors.  The middle panel gives the R2 values reflecting the effectiveness of the pretest as 

a covariate at levels 3, 2 and 1 (district, school, and students, respectively), along with 

their standard errors, and the right hand panel gives the gives the R2 values reflecting the 

effectiveness of the demographic variables as covariates at levels 3, 2, and (along with 

their standard errors). 

 

Insert Tables 6 and 7 About Here 

 

The design parameters for mathematics achievement in grades 7 to 11 are given in 

Table 8 and the design parameters for reading achievement in grades 7 to 10 are given in 

Table 9.  These tables have the same format as Tables 6 and 7 but reflect different grade 

levels.  Tables 8 and 9 are somewhat sparser, which reflects state practices of less 

frequent assessments at higher grade levels.  One striking feature of Table 8 is that the 

level 3 (district level) intraclass correlations are all relatively small but some of the level 

2 (school level) intraclass correlations in mathematics (e.g., in Florida) are larger than at 

the lower grades.    Table 9 reflects the same pattern of intraclass correlations in reading 

achievement.  These findings could have important implications for research design. 
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Insert Tables 8 and 9 About Here 

 

Using the Results of this Paper 

The results of this paper can be used alone or with software designed to help plan 

the details of the design of cluster randomized experiments.  One application is for 

planning the sample size required to achieve a specific design sensitivity.  The design 

sensitivity might be specified as a particular statistical power to detect a treatment effect 

of a given size, a standard error of an estimate of a treatment effect given a particular 

total standard deviation, or a specific minimum detectable effect size.  The design 

parameter values given in this paper can provide inputs for comparing the sensitivity 

different alternative designs and for planning optimal allocations once a design type has 

been chosen.  We illustrate several applications of these design parameters in planning 

designs using a commercial program that computes statistical power for cluster 

randomized studies, CRT-Power (Borenstein, 2012), but most of the same calculations 

could be done using other software, including freeware such as Optimal Design 

(Spybrook, et al., 2012). 

 Suppose that we are planning a cluster randomized experiment to evaluate an 

intervention that involves teacher professional development in grade 5 in Kentucky (or a 

state we believe is very similar to Kentucky).  We might start by assuming that we will 

have a sample of schools dispersed across many school districts, so the design parameters 

in Table 2 would be appropriate.  Entering Table 2 in the row for grade 5 in Kentucky, 

we see that the intraclass correlation for mathematics at the school level ignoring districts 

is ρ = 0.151.  We might envision a sample size of n = 25 students per school and an effect 



 17 

size (standardized by the total standard deviation) of δ = 0.25.  We might enter this 

intraclass correlation, effect size δ = 0.25, and level 1 sample size n = 25 into CRT-Power 

and note that a total of m = 48 schools per treatment group would be necessary to obtain 

power of 80%, with no covariates.  However if a pretest was available, we might enter 

Table 2 on the row for grade 5 in Kentucky and go to the second vertical panel of the 

table to obtain the values R2
2 = 0.551 and R1

2 = 0.584 for the effectiveness of the 

covariate at level 2 and level 1.  Entering these values into CRT-Power, we see that only 

m = 22 schools per treatment group would be necessary to obtain statistical power of 

80%.  If a pretest was not available, but instead demographic data were available, Table 2 

shows that the effectiveness of the pretest as a covariate would be characterized by R2
2 = 

0.322 and R1
2 = 0.085, where each R2 values involves 4 covariates.  Entering these values 

into CRT-Power (along with ρ = 0.151, n = 25, and noting that there are 4 covariates) we 

see that m = 35 schools per treatment group would be necessary to obtain statistical 

power of 80%.  This difference (m = 35 versus m = 22 schools required per treatment 

group) reflects how much more effective pretest is as a covariate relative to the 

demographic variables. 

Another design option might be to obtain all of the schools for the study from a 

single large district.  In that case the design parameters in Table 6 would be appropriate 

because the level 2 design parameters reflect the variation of schools within districts.  

Entering Table 6 in the row for grade 5 in Kentucky, we see that the intraclass correlation 

for mathematics at the school level ignoring districts is ρ3 = 0.020 and ρ2 = 0.117.   We 

might envision a sample size of n = 25 students per school and an effect size 

(standardized by the total standard deviation) of δ = 0.25.  We might enter this intraclass 
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correlation ρ2 = 0.117, effect size δ = 0.25, and level 1 sample size n = 25 into CRT-

Power and note that a total of m = 40 schools per treatment group would be necessary to 

obtain power of 80%, with no covariates.  Note that this is less than the m = 48 schools 

per treatment group required in the design with many unblocked districts.  Now consider 

the sensitivity of the design if a pretest was available, Table 6 shows that the 

effectiveness of the pretest as a covariate would be characterized by R2
2 = 0.500 and R1

2 

= 0.584.  Entering these values into CRT-Power, we see that only m = 20 schools per 

treatment group would be necessary to obtain statistical power of 80%.  If a pretest was 

not available, but instead demographic data were available, Table 6 shows that the 

effectiveness of the demographic variables as covariates would be characterized by R2
2 = 

0.315 and R1
2 = 0.085, where each R2 values involves 4 covariates.  Entering these values 

into CRT-Power (along with ρ = 0.117, n = 30, and noting that there are 4 covariates) we 

see that m = 30 schools per treatment group would be necessary to obtain statistical 

power of 80%.  This difference (m = 30 versus m = 20 schools required per treatment 

group) reflects how much more effective pretest is as a covariate relative to the 

demographic variables. 

Alternatively, one might consider a design that sampled schools from say 3 

districts and used district dummy variables with the assumption that there is no district by 

treatment interaction.  In that case Table 2 presenting design parameters from two level 

analyses provides the intraclass correlation data because the intraclass correlations in this 

table reflect the total variation across schools (and districts).  However some of the 

variation is accounted for by the district dummy variables being used as covariates.  

Entering Table 6 on the row for Grade 5 in Kentucky, we see that the intraclass 
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correlation for mathematics at the district level is ρ3 = 0.020 and the intraclass correlation 

at the school within district level is ρ2 = 0.117.   The three district level covariates (the 

district dummy variables) account for variance corresponding to an R2
2 of ρ3/(ρ2 + ρ3) = 

0.020/ (0.117 + 0.020) = 0.146.  Continue to consider a sample size of n = 25 students per 

school and an effect size of δ = 0.25.  However now we have three district level 

covariates corresponding to the district dummy variables, and these dummy variables 

correspond to an R2
2 of R2

2 = ρ3/(ρ2 + ρ3) = 0.02/ (0.117 + 0.020) = 0.146.  Entering the 

intraclass correlation of ρ2 = 0.151, three covariates at level 2 with a combined R2 value 

of R2
2 = 0.146, an effect size δ = 0.25, and level 1 sample size n = 25 into CRT-Power 

and note that a total of m = 42 schools per treatment group would be necessary to obtain 

power of 80%, with no other covariates.     

 One more option that might be considered is planning a three level cluster 

randomized trial that assigned school districts to treatments at grade 5 in Kentucky.  

Continue to assume a sample size of n = 25 students per school and an effect size 

(standardized by the total standard deviation) of δ = 0.25, except now we consider a three 

level design in which districts are assigned to treatments and there are p = 4 schools per 

district.    Entering Table 6 in the row for grade 5 in Kentucky, to obtain the intraclass 

correlation for mathematics at the district level of ρ3 = 0.020 the intraclass correlation at 

the school within district level of ρ2 = 0.117.  Entering the intraclass correlations ρ2 = 

0.117 and ρ3 = 0.020, effect size δ = 0.25, the level 1 sample size n = 25, and the level 2 

sample size of p = 4 into CRT-Power and note that a total of m = 16 districts (and 64 

schools) per treatment group would be necessary to obtain power of 80%, with no 

covariates.    However if a pretest was available, Table 6 shows that the effectiveness of 
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the pretest as a covariate would be characterized by R3
2 = 0.617, R2

2 = 0.500, and R1
2 = 

0.584.  Entering these values into CRT-Power, we see that only m = 8 districts (and 32 

schools) per treatment group would be necessary to obtain statistical power of 80%.   

 Of the options considered here, the option of using schools from a single district 

yields a design that requires the smallest sample size to achieve statistical power of 80%.  

However this design has the disadvantage that it may limit generalizability, since it 

involves only a single school district.  Moreover, it might be infeasible because it requires 

so many (40) schools from a single district.  The design involving many districts and 

pooling between district variation into the between school variation (not blocking by 

school district) is nearly as sensitive (requiring a total of 42 schools) and probably has 

advantages in external validity and feasibility.  The results in this example are driven by 

 the fact that, at grade 5 in Kentucky,  the level 3 (between district) intraclass correlation 

is so small relative to the level 2 (between schools within districts) intraclass correlation 

(ρ3 = 0.020 and ρ2 = 0.117).  The corresponding results in Arizona (where ρ3 = 0.122, ρ2 

= 0.099, and the intraclass correlation ignoring districts is ρ = 0.201) would have been 

substantially different. 

 The design parameters provided here can be used to determine optimal allocations 

of sample between levels of a design to achieve 80% power for the smallest relative cost.  

To do so we must also specify a cost structure in terms of the relative cost of units at each 

level of the design. Consider a three level design assigning school districts at grade 5 in 

Kentucky, and assume that the cost of adding a new district to the study is 5 times the 

cost of adding a school in an existing district, which is 10 times the cost of adding an 

individual within an existing school. That is, the relative cost of level 3 units (districts) is 
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c3 = 50, the relative cost of level 2 units (schools) is c2 = 10, and the relative cost of level 

1 units students) is c1 = 1.  Entering these cost parameters along with ρ2 = 0.117 and ρ3 = 

0.020 into CRT-Power, and using the optimal design wizard, we obtain an optimal 

allocation of m = 55 districts per treatment, each with p = 5 schools, each with n = 9 

students in the study.  With the same cost structure, the optimal allocation for the same 

design at grade 5 in Arizona (where ρ3 = 0.122, ρ2 = 0.099) would be m = 17 districts per 

treatment, each with p = 2 schools, each with n = 9 students in the study.  

 Finally, the design parameters provided here could be used to explore the 

minimum detectable effect size, such as the minimum effect size detectable with 80% 

power.  Consider a two level cluster randomized design assigning schools to treatments in 

grade 5 in Kentucky, where the intraclass correlation ignoring districts is ρ = 0.151 and 

the covariate effects can be summarized as R2
2 = 0.551 and R1

2 = 0.584.  Suppose that we 

anticipate using n = 25 students per school.  Entering these design parameters into CRT-

Power, we can explore the minimum detectable effect size for various possible designs. If 

we can only afford m = 10 schools per treatment, the minimum detectable effect size is δ 

= 0.382.  If we could afford m = 15 schools per treatment group, the minimum detectable 

effect size drops to δ = 0.305, and if we could afford m = 20 schools per treatment group, 

the minimum detectable effect size drops to δ = 0.261.  If we could afford m = 22 schools 

per treatment group, the minimum detectable effect size drops to δ = 0.249, which 

corresponds to the finding above that 22 schools per treatment group were necessary to 

obtain 80% in this design.  

 

Discussion  
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 In this section we discuss the general patterns of our findings and contrast our 

results with Hedges and Hedberg’s (2007) work.  We focus our discussion on grades 3 

through 8 because we have the most states represented in these grades.  Obviously, we 

have estimated a large number of parameters.  To keep our findings tractable, we offer 

comparisons only with the averages of state parameters.  

The central finding in this study is that states vary in their variance decomposition 

patterns and may not be adequately summarized by the national estimates from Hedges 

and Hedberg’s earlier work.   This is not a criticism of the earlier estimates, but it is 

instead an added nuance and warning that national estimates may not fit local contexts.   

Yet, this variation seems to occur due to district structure, since many within-district 

intraclass correlations are consistent.  

While many states produced similar within-district ICCs, the estimates from 

Florida in grades 6, 7, and 8 for both math and reading are far larger than the other states.   

One conjecture is that this is related to district size, since Florida has fewer but much 

larger districts than the other states.  Small auxiliary analyses show that the natural log of 

the ratio of students to districts is a powerful predictor of our within-district measures, 

explaining from two thirds to four fifths of the variance among the state estimates in math 

and a quarter to four fifths in reading in grades 4 through 8. However, this is simply 

conjecture with such a small sample of estimates, and we further explore this in another 

manuscript. 

  Comparing our two-level estimates to Hedges and Hedberg (2007), we find that 

the local context differs substantively from the national context, with the assumption that 

these parameters are relatively stable over time.  Comparing the average of the state 
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estimates with the earlier published national tables, we find that our state estimates are 

smaller for the elementary grades.  For example our the average grade 3 math result from 

our states is 0.180, compared to 0.241 nationally, and 0.175 vs. 0.232 for grade 4, 0.187 

vs. 0.216 in grade 5, and 0.200 vs. 0.264 for grade 6.   We find a similar pattern in 

reading: 0.156 here vs. 0.271 nationally for grade 3, 0.170 vs. 0.242 for grade 4, 0.164 vs. 

0.263 for grade 5, and 0.170 vs. 0.260 for grade 6.   This pattern is reversed for the 

secondary grades 7 and 8, where our average state results are larger than those published 

based on national sources for both reading and math. However, the differences are not as 

large.  

 We also find differences with our estimates of R2 parameters associated with 

using a pretest.  In particular, our two-level models produced higher R2 statistics for math 

at both level 1 and level 2.  At level 1, these differences are 0.58 here vs. 0.49 nationally 

for grade 4, 0.61 vs. 0.51 for grade 5, and 0.62 vs. 0.50 in grade 6.  At level 2, we also 

find greater values: 0.74 vs. 0.67 in grade 4, 0.76 vs. 0.63 in grade 5.  Similar to the 

values of ICCs, however, we found similar values in grade 8 at level 1: 0.68 here vs. 0.65 

nationally (grade 7 was not available from a national survey) and grades 6 and 7 for level 

2: 0.73 vs. 0.74 and 0.88 vs. 0.82, respectively.    

 R2 values in reading, in contrast, were similar to those found in national surveys 

for most grades, with the largest difference coming from the grade 6 level 1 estimate of 

0.57 vs. 0.51.  This points to the importance of the local environment in parameters for 

mathematics intervention evaluation design, whereas the local context appears to be less 

important in reading studies.   Also of interest is that in our local estimates, reading R2 
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values were lower, on average, than math R2 values at level 1, whereas the opposite is 

true at a national level.  

 This study is one of the first to estimate parameters in a systematic way using 

three level models.  Since districts are key stakeholders in the process of designing 

evaluations, it is key to understand how the school-level parameters differ from the three 

level models compared to the two level models. Overall, when we examine the average of 

the state estimates for both reading and math, we find that the school level estimates from 

the three level models are generally 40 percent smaller than the estimates from three level 

models in the elementary grades.  This difference in reduced to about a third reduction for 

the early secondary grades. 

 When we examine the value of the pre-test in our three level models, the R2 

values at level 1 in the three level models were generally consistent, but this was not true 

of the R2 values at higher levels.  Overall, R2 values at level 1 increased with grades for 

both reading and math, averaging 0.58 in grade 4 to 0.68 in grade 8 for math, and 0.56 to 

0.59 for reading.  We also found that level-2 R2s increased with grade level, but the level 

2 R2 values were not consistent across states as Kentucky had much lower values.  

Finally, values for the level 3 R2s were high at the district level, but also less consistent 

with Arkansas and Kentucky showing lower values.  

 

Conclusions 

We have presented empirical evidence about design parameters useful in planning 

two, three, and four level cluster randomized experiments using academic achievement as 

outcomes.  All estimates are presented along with standard errors that provide some sense 
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of the sampling error inherent in these estimates, which tends to be rather small.  We 

have illustrated the use of the design parameters in planning cluster randomized studies. 

The intraclass correlation values reported in this tabulation differ somewhat from 

the national values reported by Hedges and Hedberg (2007).  The values in the lower 

grades are generally consistent with those reported in Tables 2 and 3, albeit with variation 

from state to state.  However, for higher grades, many of the intraclass correlation values 

reported in Tables 4 and 5 are larger than those in Hedges and Hedberg (2007).  More 

over the decreasing trend in intraclass correlations with grade level that they found is not 

evident in Tables 4 and 5.  There are many potential explanations of these differences.  

For example, they might reflect the combination of states in the national representative 

samples used by Hedges and Hedberg (2007) or they might reflect the fact that state 

assessments used here are better aligned with instruction, but these are just speculations  

While the evidence reported in this paper is based on data from state longitudinal 

data systems that essentially correspond to censuses in seven states, it has some 

limitations. It is data from only seven states and in grades 3 to 11, but covers grades 3 to 

8 in most states.  Obviously not all grades are covered in every state.  While states are 

smaller than the nation, and therefore state estimates should be more relevant than 

national estimates like those of Hedges and Hedberg (2007), there are heterogeneities 

even within single states.  There is, however, a conundrum in seeking estimates from 

smaller areas that better represent the region in which the sample will be drawn.  While 

such estimates may have less bias, they will also have greater variance, and at some point 

reduction in bias is more than compensated for by the increase in variance. The data is 

based on state assessments, and while these may be very relevant to many studies 
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because the state assessments are likely to be aligned with instruction, the evidence 

reported here would be less relevant to studies that will use achievement tests that are not 

aligned with instruction.  

We are currently attempting to extend this database by adding evidence from 

additional states and additional years.  As we do so, it is our intention to make these 

values available on a website SOMEWEBSITE so that the entire collection can be made 

available to researchers designing new studies.  We also hope that states will consider 

making information about design parameters available routinely to assist researchers in 

planning evaluation studies in their states.
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Appendix: Multilevel Models Defining Design Parameters 

This appendix describes the specific multilevel models on which the computations 

of design parameters are based.  

Two-Level Hierarchical Designs 

No Covariates 

Suppose that m clusters and there are ni observations in the ith cluster. Let Yij be 

the jth observation in the ith cluster. Then the level 1 (individual-level) model is 

 Yij = β0i + εij , i = 1, …, m; j = 1, …, ni,   

where β0i is the mean of the ith cluster and the εij are independently normally distributed 

with mean 0 and variance σ1
2.  

The level 2 (cluster-level) model is 

 β0i = γ0 + ηi, i = 1, ..., m, 

where γ0 is the grand mean, and the ηi are independently distributed with mean 0 and 

variance σ2
2.  The intraclass correlation coefficient ρ is defined in terms of the variances 

as ( )2 2 2
2 1 2= +ρ σ σ σ .   

 

With Covariates 

If there are q covariates X1, …, Xq at level 1 and q covariate W1, …, Wq at level 

2, the level 1 model becomes 

Yij = β0i + β1 Xij + … + βq Xqij + εij , i = 1, …, m; j = 1, …, ni,  

where β0i is the covariate-adjusted mean of the ith cluster, βa is the (fixed) effect of the ath 

individual-level covariate, Xaij is the value of the individual-level covariate Xa (centered 
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on cluster means), and the εij are independently normally distributed with mean 0 and 

variance σA1
2.  

The level 2 (cluster-level) model is 

β0i = γ0 + γ1Wi + …+ γqWqi + ηi, i = 1, ..., m, 

where γ0 is the covariate-adjusted grand mean, γ1, is the effect of the ath cluster-level 

covariate, Wki is the (grand mean centered) value of the cluster-level covariate Wa for 

cluster i, and the ηi are independently distributed with mean 0 and variance σA2
2. 

In this model, the intraclass correlation ρ is still defined in terms of the unadjusted 

variances as given in the model with no covariates.  In this model the covariate outcome 

correlations are defined in terms of the adjusted and unadjusted residual variances as 

2 2 2
1 1 11 AR σ σ= − and 2 2 2

2 2 21 AR σ σ= − .   

 

Three-Level Hierarchical Designs 

No Covariates 

Suppose that there is a three stage cluster sampling design m clusters, so that there 

are pi subclusters in the ith  cluster and the jth subcluster has nij observations. Let Yijk be 

the kth observation in jth subcluster of the ith cluster. Thus, the level 1 model is 

 Yijk = β0ij + εijk , i = 1, …, m; j = 1, …, pi; k = 1, …, nij,     

where β0ij is the mean of the jth subcluster in the ith cluster, and the εijk are independently 

normally distributed with mean 0 and variance σ1
2.  

The level 2 (subcluster-level) model is 

β0ij = γ0i + ηij, i = 1, ..., m, j = 1, ..., pi, 
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where γ0 is the mean of the ith cluster and the ηij are independently distributed with mean 

0 and variance σ2
2.  

The level 3 (cluster-level) model is 

γ0i = π0 + ξi, i = 1, ..., m, 

where π0 is the grand mean, and the ξi are independently normally distributed with mean 

0 and variance σ3
2.  The level 2 intraclass correlation is defined in terms of the variances 

as ( )2 2 2 2
2 2 1 2 3= + +ρ σ σ σ σ  and the level 3 intraclass correlation is ( )2 2 2 2

3 3 1 2 3= + +ρ σ σ σ σ .   

 

With Covariates 

If there are q covariate W1, …, Wq at the cluster level, and q covariates Z1, …, Zq 

at the subcluster level, and q covariates X1, …, Xq at the individual level, the level 1 

(individual-level) model is 

 Yijk = β0ij + β1 X1ij + … + βq Xqij + εijk , i = 1, …, m; j = 1, …, pi; k = 1, …, nij,   

where β0ij is the covariate-adjusted mean of the jth subcluster in the ith cluster, βa is the 

effect of the ath individual-level covariate (which is a fixed effect), Xijk is the values of the 

individual-level covariate (centered on cluster means), and the εijk are independently 

normally distributed with mean 0 and variance σA1
2.  

The level 2 (subcluster-level) model is 

 β0ij = γ0i + γ1 Z1ij  + … + γqZqij + ηij, i = 1, ..., m; j = 1, ..., pi, 

where γ0i is the covariate-adjusted mean of the ith cluster, γa is the effect of the ath level 2 

covariate (which is a fixed effect), Zaij is the values of the subcluster-level covariate Za 

(centered on subcluster means), and the ηij are independently distributed with mean 0 and 

variance σA2
2.  
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The level 3 (cluster-level) model is 

γ0i = π0 + π1W1i  + … + πqWqi + ξi, i = 1, ..., m,  

where π0 is the covariate-adjusted grand mean, π1 is the effect of the level 3 covariate, 

Wai is the (grand mean centered) value of the ath cluster-level covariate Wa, and the ξi are 

independently distributed with mean 0 and variance σA3
2. 

In the model with covariates, the three intraclass correlations ρ2 and ρ3 (and their 

complement ρ ) are still defined in terms of the unadjusted variances as given in the 

model with no covariates.  In this model the covariate outcome correlations are defined in 

terms of the adjusted and unadjusted variances as 2 2 2
1 1 11 AR σ σ= − , 2 2 2

2 2 21 AR σ σ= − , and 

2 2 2
3 3 31 AR σ σ= − .   
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Table 1

Math Reading Math Reading Math Reading
Grade 1

Arkansas 245 245 488 488 32,510 32,350
Grade 2

Arkansas 245 245 489 489 32,381 32,347
Grade 3

Arkansas 246 246 490 490 32,002 31,962
Arizona 193 193 919 919 64,768 64,769
Kentucky 174 174 721 721 43,439 43,439
Massachusetts 279 279 958 958 61,673 61,204
North Carolina 119 118 1,324 1,323 98,993 98,676
Wisconsin 414 414 1,046 1,046 51,340 51,165

Grade 4
Arkansas 246 246 488 488 31,714 31,677
Arizona 195 195 920 920 64,581 64,569
Florida 73 73 1,842 1,841 144,368 144,375
Kentucky 174 174 723 723 44,171 44,171
Massachusetts 278 278 942 942 62,736 62,345
North Carolina 119 119 1,318 1,318 96,196 95,902
Wisconsin 415 415 1,043 1,043 52,016 51,920

Grade 5
Arkansas 245 245 434 434 31,550 31,512
Arizona 192 192 913 913 64,508 64,509
Florida 73 73 1,841 1,841 147,967 147,967
Kentucky 174 174 716 716 44,279 44,279
Massachusetts 277 277 870 870 63,231 62,872
North Carolina 120 120 1,302 1,302 94,707 94,454
Wisconsin 415 415 999 999 51,628 51,535

Grade 6
Arkansas 244 244 340 340 31,161 31,137
Arizona 191 191 744 744 63,364 63,361
Florida 74 74 1,109 1,106 145,611 145,668
Kentucky 174 174 409 409 44,475 44,475
Massachusetts 273 273 535 534 64,283 63,958
North Carolina 125 123 643 641 92,967 92,714
Wisconsin 416 416 632 632 51,778 51,712

Grade 7
Arkansas 245 245 299 299 31,085 31,048
Arizona 189 189 538 537 64,349 64,351
Florida 74 74 1,002 1,008 151,181 151,335
Kentucky 174 174 326 326 43,743 43,743
Massachusetts 240 240 440 441 63,704 63,448
North Carolina 128 128 614 614 91,774 91,532
Wisconsin 416 416 563 563 52,523 52,467

Grade 8
Arkansas 245 245 296 296 30,634 30,610
Arizona 190 190 539 539 65,044 65,059
Florida 74 74 1,024 1,030 148,099 148,284
Kentucky 174 174 323 323 43,926 43,926
Massachusetts 240 240 435 435 65,119 64,818
North Carolina 128 128 620 621 91,517 91,278
Wisconsin 416 416 565 565 53,263 53,208

Grade 9
Arkansas 245 245 294 294 30,964 29,882
Florida 73 73 1,117 1,112 160,207 160,589

Grade 10
Arizona 118 118 261 261 60,933 61,448
Florida 73 73 925 939 156,205 160,821
Kentucky 169 229 43,647
Massachusetts 258 258 341 341 65,648 65,747
Wisconsin 380 380 465 465 58,728 58,692

Grade 11
Kentucky 169 230 40,770

Source: Arkansas, Arizona, Florida, Kentucky, Massachusetts, North Carolina, and 
Wisconsin Departments of Education and the Common Core of Data (CCD). Notes: 
a: States varied in the detail provided for special needs students.  When possible, we 
removed only students with cognitive disabilities.  Typically, this removed 10 
percent of the population.  Higher rates reflect coarse disability data where details of 
the disability were not available. We also removed students who were members of a 
chater school.

Sample Sizes by Subject, State, and Grade
Estimation Sample

District Level School Level Student Levela



Table 2

ρ2 SE(ρ2) R22 SE(R22) R21 SE(R21) R22 SE(R22) R21 SE(R21)
Grade and State
Grade 1

Arkansas 0.175 0.010 0.527 0.031 0.077 0.003
Grade 2

Arkansas 0.177 0.010 0.631 0.027 0.471 0.004 0.574 0.029 0.081 0.003
Grade 3

Arkansas 0.164 0.010 0.509 0.032 0.451 0.004 0.467 0.033 0.076 0.003
Arizona 0.184 0.008 0.589 0.021 0.125 0.002
Kentucky 0.146 0.007 0.265 0.028 0.072 0.002
Massachusetts 0.243 0.009 0.647 0.018 0.089 0.002
North Carolina 0.162 0.006 0.643 0.016 0.130 0.002
Wisconsin 0.182 0.007 0.729 0.014 0.082 0.002
Average 0.180 0.003 0.557 0.009 0.096 0.001

Grade 4
Arkansas 0.154 0.010 0.685 0.024 0.521 0.004 0.488 0.032 0.080 0.003
Arizona 0.188 0.008 0.770 0.013 0.578 0.003 0.644 0.019 0.110 0.002
Florida 0.165 0.005 0.832 0.007 0.568 0.002 0.670 0.013 0.079 0.001
Kentucky 0.153 0.008 0.472 0.027 0.540 0.003 0.326 0.029 0.083 0.003
Massachusetts 0.225 0.009 0.758 0.014 0.577 0.003 0.632 0.019 0.083 0.002
North Carolina 0.164 0.006 0.772 0.011 0.637 0.002 0.630 0.016 0.137 0.002
Wisconsin 0.174 0.007 0.873 0.007 0.608 0.003 0.752 0.013 0.084 0.002
Average 0.175 0.003 0.737 0.006 0.576 0.001 0.592 0.008 0.094 0.001

Grade 5
Arkansas 0.159 0.010 0.701 0.024 0.577 0.004 0.502 0.034 0.085 0.003
Arizona 0.201 0.008 0.801 0.012 0.612 0.002 0.636 0.019 0.122 0.002
Florida 0.180 0.006 0.838 0.007 0.610 0.002 0.688 0.012 0.079 0.001
Kentucky 0.151 0.008 0.551 0.025 0.584 0.003 0.322 0.029 0.085 0.003
Massachusetts 0.242 0.009 0.796 0.012 0.649 0.002 0.699 0.017 0.093 0.002
North Carolina 0.178 0.006 0.795 0.010 0.656 0.002 0.611 0.017 0.132 0.002
Wisconsin 0.199 0.008 0.847 0.009 0.605 0.003 0.641 0.018 0.087 0.002
Average 0.187 0.003 0.761 0.006 0.613 0.001 0.586 0.008 0.098 0.001

Grade 6
Arkansas 0.146 0.011 0.637 0.031 0.613 0.004 0.471 0.039 0.092 0.003
Arizona 0.202 0.009 0.736 0.017 0.639 0.002 0.573 0.024 0.116 0.002
Florida 0.295 0.012 0.897 0.006 0.634 0.002 0.807 0.010 0.094 0.001
Kentucky 0.124 0.009 0.394 0.038 0.582 0.003 0.277 0.038 0.098 0.003
Massachusetts 0.232 0.012 0.790 0.016 0.682 0.002 0.746 0.019 0.104 0.002
North Carolina 0.186 0.010 0.762 0.016 0.638 0.002 0.636 0.023 0.153 0.002
Wisconsin 0.212 0.011 0.880 0.009 0.648 0.003 0.744 0.018 0.093 0.002
Average 0.200 0.004 0.728 0.008 0.634 0.001 0.608 0.010 0.107 0.001

Source: Arkansas, Arizona, Florida, Kentucky, Massachusetts, North Carolina, and Wisconsin Departments of 
Education. a: Model includes the student pretest, the school mean of current students' pretest, and district mean 
of current students' pretest. b: Model includes gender, race, low SES indicator, English learner status, and school 

Intraclass Correlations (ICCs) and R2estimates for Mathematics Achievement by State: Two-level Models, 
Grades 1-6

Unconditional Pretest  Covariatea Demographic Covariatesb

School Level School Level Student Level School Level Student Level



Table 3

ρ2 SE(ρ2) R22 SE(R22) R21 SE(R21) R22 SE(R22) R21 SE(R21)
Grade and State
Grade 1

Arkansas 0.130 0.008 0.447 0.033 0.059 0.003
Grade 2

Arkansas 0.138 0.009 0.714 0.022 0.467 0.004 0.666 0.025 0.080 0.003
Grade 3

Arkansas 0.147 0.009 0.724 0.021 0.473 0.004 0.598 0.028 0.114 0.003
Arizona 0.183 0.008 0.741 0.015 0.170 0.003
Kentucky 0.102 0.006 0.416 0.028 0.074 0.002
Massachusetts 0.212 0.008 0.753 0.014 0.091 0.002
North Carolina 0.143 0.005 0.769 0.011 0.146 0.002
Wisconsin 0.147 0.006 0.774 0.012 0.092 0.002
Average 0.156 0.003 0.675 0.008 0.115 0.001

Grade 4
Arkansas 0.143 0.009 0.772 0.018 0.565 0.004 0.579 0.029 0.117 0.003
Arizona 0.194 0.008 0.872 0.008 0.596 0.003 0.834 0.010 0.153 0.003
Florida 0.159 0.005 0.912 0.004 0.522 0.002 0.809 0.008 0.078 0.001
Kentucky 0.108 0.006 0.584 0.024 0.480 0.003 0.423 0.028 0.083 0.003
Massachusetts 0.279 0.010 0.819 0.011 0.512 0.003 0.707 0.016 0.106 0.002
North Carolina 0.146 0.005 0.920 0.004 0.610 0.002 0.794 0.010 0.161 0.002
Wisconsin 0.162 0.007 0.897 0.006 0.662 0.002 0.811 0.011 0.098 0.002
Average 0.170 0.003 0.825 0.005 0.564 0.001 0.708 0.007 0.114 0.001

Grade 5
Arkansas 0.137 0.009 0.805 0.017 0.604 0.004 0.664 0.026 0.128 0.004
Arizona 0.187 0.008 0.893 0.007 0.592 0.003 0.788 0.012 0.174 0.003
Florida 0.147 0.005 0.941 0.003 0.559 0.002 0.811 0.008 0.074 0.001
Kentucky 0.110 0.006 0.605 0.023 0.482 0.003 0.404 0.028 0.092 0.003
Massachusetts 0.246 0.010 0.867 0.008 0.550 0.003 0.766 0.014 0.113 0.002
North Carolina 0.151 0.006 0.917 0.004 0.591 0.002 0.784 0.011 0.151 0.002
Wisconsin 0.167 0.007 0.899 0.006 0.673 0.002 0.793 0.012 0.106 0.003
Average 0.164 0.003 0.847 0.004 0.579 0.001 0.716 0.007 0.120 0.001

Grade 6
Arkansas 0.121 0.010 0.779 0.021 0.578 0.004 0.570 0.035 0.139 0.004
Arizona 0.180 0.009 0.870 0.009 0.567 0.003 0.774 0.015 0.170 0.003
Florida 0.230 0.011 0.951 0.003 0.538 0.002 0.871 0.007 0.080 0.001
Kentucky 0.081 0.006 0.569 0.032 0.491 0.003 0.441 0.037 0.114 0.003
Massachusetts 0.245 0.012 0.875 0.010 0.565 0.003 0.821 0.014 0.127 0.002
North Carolina 0.147 0.008 0.889 0.008 0.608 0.002 0.790 0.015 0.174 0.002
Wisconsin 0.186 0.010 0.928 0.005 0.635 0.003 0.859 0.010 0.120 0.003
Average 0.170 0.004 0.837 0.006 0.569 0.001 0.732 0.008 0.132 0.001

Source: Arkansas, Arizona, Florida, Kentucky, Massachusetts, North Carolina, and Wisconsin Departments of 
Education. a: Model includes the student pretest, the school mean of current students' pretest, and district mean 
of current students' pretest. b: Model includes gender, race, low SES indicator, English learner status, and school 

Intraclass Correlations (ICCs) and R2estimates for Reading Achievement by State: Two-level Models, Grades 1-
6

Unconditional Pretest  Covariatea Demographic Covariatesb

School Level School Level Student Level School Level Student Level



Table 4

ρ2 SE(ρ2) R22 SE(R22) R21 SE(R21) R22 SE(R22) R21 SE(R21)
Grade and State
Grade 7

Arkansas 0.160 0.012 0.216 0.042 0.591 0.004 0.554 0.038 0.092 0.003
Arizona 0.202 0.011 0.842 0.013 0.666 0.002 0.703 0.021 0.131 0.002
Florida 0.346 0.014 0.939 0.004 0.586 0.002 0.815 0.011 0.082 0.001
Kentucky 0.121 0.009 0.590 0.035 0.624 0.003 0.392 0.042 0.099 0.003
Massachusetts 0.266 0.014 0.913 0.008 0.722 0.002 0.833 0.015 0.101 0.002
North Carolina 0.209 0.011 0.879 0.009 0.675 0.002 0.661 0.022 0.132 0.002
Wisconsin 0.238 0.012 0.921 0.006 0.685 0.002 0.775 0.017 0.102 0.003
Average 0.220 0.005 0.757 0.008 0.650 0.001 0.676 0.010 0.106 0.001

Grade 8
Arkansas 0.134 0.011 0.826 0.018 0.687 0.003 0.591 0.037 0.116 0.003
Arizona 0.202 0.011 0.865 0.011 0.657 0.002 0.607 0.026 0.118 0.002
Florida 0.384 0.013 0.968 0.002 0.658 0.001 0.828 0.010 0.101 0.001
Kentucky 0.119 0.009 0.752 0.024 0.665 0.003 0.381 0.043 0.093 0.003
Massachusetts 0.259 0.014 0.931 0.006 0.746 0.002 0.800 0.017 0.097 0.002
North Carolina 0.264 0.013 0.884 0.009 0.661 0.002 0.645 0.023 0.134 0.002
Wisconsin 0.199 0.011 0.901 0.008 0.704 0.002 0.741 0.019 0.099 0.002
Average 0.223 0.004 0.875 0.005 0.683 0.001 0.656 0.010 0.108 0.001

Grade 9
Arkansas 0.120 0.010 0.869 0.014 0.610 0.004 0.649 0.033 0.096 0.003
Florida 0.405 0.013 0.912 0.005 0.630 0.001 0.710 0.015 0.100 0.001

Grade 10
Arizona 0.299 0.020 0.666 0.034 0.100 0.002
Florida 0.424 0.014 0.876 0.008 0.586 0.002 0.670 0.018 0.102 0.001
Massachusetts 0.279 0.017 0.836 0.016 0.097 0.002
Wisconsin 0.194 0.012 0.871 0.011 0.637 0.003 0.820 0.015 0.115 0.002

Grade 11
Kentucky 0.081 0.008 0.406 0.050 0.069 0.002

Source: Arkansas, Arizona, Florida, Kentucky, Massachusetts, North Carolina, and Wisconsin Departments of 
Education. a: Model includes the student pretest, the school mean of current students' pretest, and district mean 
of current students' pretest. b: Model includes gender, race, low SES indicator, English learner status, and school 
and district means of these covariates. 

Intraclass Correlations (ICCs) and R2estimates for Mathematics Achievement by State: Two-level Models, 
Grades 7-11

Unconditional Pretest  Covariatea Demographic Covariatesb

School Level School Level Student Level School Level Student Level



Table 5

ρ2 SE(ρ2) R22 SE(R22) R21 SE(R21) R22 SE(R22) R21 SE(R21)
Grade and State
Grade 7

Arkansas 0.118 0.010 0.415 0.044 0.597 0.004 0.675 0.031 0.131 0.004
Arizona 0.177 0.010 0.911 0.007 0.589 0.003 0.805 0.015 0.178 0.003
Florida 0.238 0.011 0.976 0.001 0.549 0.002 0.887 0.007 0.079 0.001
Kentucky 0.087 0.007 0.709 0.027 0.521 0.003 0.466 0.040 0.113 0.003
Massachusetts 0.313 0.016 0.918 0.007 0.588 0.003 0.826 0.015 0.148 0.003
North Carolina 0.172 0.010 0.951 0.004 0.622 0.002 0.830 0.013 0.158 0.002
Wisconsin 0.191 0.011 0.949 0.004 0.634 0.003 0.895 0.008 0.111 0.003
Average 0.185 0.004 0.833 0.008 0.586 0.001 0.769 0.008 0.131 0.001

Grade 8
Arkansas 0.114 0.010 0.846 0.016 0.586 0.004 0.618 0.035 0.142 0.004
Arizona 0.167 0.010 0.893 0.009 0.582 0.003 0.760 0.018 0.183 0.003
Florida 0.330 0.013 0.975 0.002 0.580 0.002 0.848 0.009 0.095 0.001
Kentucky 0.088 0.007 0.766 0.023 0.531 0.003 0.423 0.042 0.115 0.003
Massachusetts 0.269 0.014 0.940 0.006 0.594 0.003 0.854 0.013 0.140 0.003
North Carolina 0.193 0.010 0.960 0.003 0.620 0.002 0.825 0.013 0.176 0.002
Wisconsin 0.180 0.010 0.933 0.005 0.621 0.003 0.831 0.013 0.121 0.003
Average 0.192 0.004 0.902 0.004 0.588 0.001 0.737 0.009 0.139 0.001

Grade 9
Arkansas 0.100 0.009 0.772 0.023 0.461 0.004 0.696 0.030 0.111 0.003
Florida 0.319 0.012 0.936 0.004 0.560 0.002 0.761 0.012 0.109 0.001

Grade 10
Arizona 0.262 0.019 0.779 0.024 0.166 0.003
Florida 0.335 0.013 0.953 0.003 0.549 0.002 0.723 0.015 0.113 0.001
Kentucky 0.058 0.006 0.508 0.046 0.104 0.003
Massachusetts 0.328 0.018 0.853 0.015 0.153 0.003
Wisconsin 0.193 0.012 0.900 0.009 0.588 0.003 0.845 0.013 0.116 0.002

Source: Arkansas, Arizona, Florida, Kentucky, Massachusetts, North Carolina, and Wisconsin Departments of 
Education. a: Model includes the student pretest, the school mean of current students' pretest, and district mean 
of current students' pretest. b: Model includes gender, race, low SES indicator, English learner status, and school 
and district means of these covariates. 

Intraclass Correlations (ICCs) and R2 estimates for Reading Achievement by State: Two-level Models, Grades 7-10
Unconditional 

Model Pretest  Covariatea Demographic Covariatesb

School Level School Level Student Level School Level Student Level



Table 6

ρ3 SE(ρ3) ρ2 SE(ρ2) R23 SE(R23) R22 SE(R22) R21 SE(R21) R23 SE(R23) R22 SE(R22) R21 SE(R21)
Grade and State
Grade 1

Arkansas 0.039 0.009 0.125 0.010 0.235 0.047 0.569 0.029 0.077 0.003
Grade 2

Arkansas 0.053 0.011 0.114 0.010 0.536 0.043 0.595 0.028 0.471 0.004 0.395 0.049 0.597 0.028 0.081 0.003
Grade 3

Arkansas 0.041 0.010 0.115 0.010 0.420 0.048 0.491 0.032 0.451 0.004 0.396 0.048 0.465 0.033 0.075 0.003
Arizona 0.109 0.016 0.091 0.005 0.711 0.035 0.472 0.024 0.125 0.002
Kentucky 0.021 0.005 0.109 0.007 c d 0.281 0.028 0.072 0.002
Massachusetts 0.075 0.009 0.123 0.007 0.815 0.020 0.389 0.025 0.089 0.002
North Carolina 0.045 0.009 0.126 0.005 0.661 0.050 0.658 0.015 0.130 0.002
Wisconsin 0.039 0.005 0.082 0.005 0.714 0.024 0.490 0.022 0.083 0.002
Average 0.055 0.004 0.108 0.003 0.659 0.017 0.459 0.010 0.096 0.001

Grade 4
Arkansas 0.033 0.008 0.114 0.009 0.802 0.023 0.633 0.026 0.521 0.004 0.276 0.048 0.524 0.031 0.080 0.003
Arizona 0.117 0.017 0.088 0.005 0.953 0.007 0.579 0.021 0.578 0.003 0.759 0.030 0.479 0.024 0.110 0.002
Florida 0.026 0.007 0.143 0.005 0.934 0.015 0.819 0.008 0.568 0.002 0.387 0.089 0.709 0.011 0.079 0.001
Kentucky 0.016 0.005 0.122 0.007 0.522 0.052 0.409 0.028 0.540 0.003 c d 0.350 0.029 0.083 0.003
Massachusetts 0.083 0.009 0.098 0.006 0.920 0.009 0.497 0.023 0.577 0.003 0.776 0.024 0.318 0.025 0.083 0.002
North Carolina 0.049 0.009 0.122 0.005 0.905 0.017 0.722 0.013 0.637 0.002 0.623 0.055 0.630 0.016 0.137 0.002
Wisconsin 0.038 0.005 0.076 0.005 0.935 0.006 0.729 0.014 0.608 0.003 0.581 0.031 0.588 0.020 0.084 0.002
Average 0.052 0.004 0.109 0.002 0.853 0.009 0.627 0.008 0.576 0.001 0.567 0.021 0.514 0.009 0.094 0.001

Grade 5
Arkansas 0.046 0.011 0.108 0.010 0.521 0.044 0.717 0.023 0.577 0.004 0.272 0.049 0.588 0.030 0.085 0.003
Arizona 0.122 0.017 0.099 0.006 0.968 0.005 0.646 0.019 0.612 0.002 0.753 0.031 0.479 0.024 0.122 0.002
Florida 0.022 0.007 0.159 0.006 0.986 0.003 0.819 0.008 0.610 0.002 0.297 0.090 0.713 0.011 0.079 0.001
Kentucky 0.020 0.005 0.117 0.007 0.617 0.046 0.500 0.026 0.584 0.003 0.091 0.042 0.315 0.029 0.085 0.003
Massachusetts 0.098 0.011 0.100 0.006 0.935 0.008 0.570 0.022 0.649 0.002 0.837 0.018 0.425 0.025 0.093 0.002
North Carolina 0.052 0.010 0.131 0.005 0.924 0.013 0.752 0.012 0.656 0.002 0.682 0.048 0.627 0.016 0.132 0.002
Wisconsin 0.056 0.007 0.092 0.006 0.869 0.012 0.732 0.015 0.605 0.003 0.459 0.036 0.520 0.022 0.087 0.002
Average 0.059 0.004 0.115 0.003 0.831 0.010 0.677 0.007 0.613 0.001 0.484 0.019 0.524 0.009 0.098 0.001

Grade 6
Arkansas 0.035 0.012 0.107 0.014 0.727 0.030 0.609 0.033 0.613 0.004 0.395 0.049 0.516 0.038 0.092 0.003
Arizona 0.084 0.014 0.112 0.007 0.824 0.023 0.651 0.021 0.639 0.002 0.607 0.044 0.495 0.026 0.116 0.002
Florida 0.040 0.012 0.246 0.012 0.863 0.030 0.908 0.005 0.634 0.002 0.674 0.062 0.830 0.009 0.094 0.001
Kentucky 0.027 0.007 0.087 0.008 0.454 0.056 0.365 0.038 0.582 0.003 0.071 0.038 0.269 0.037 0.098 0.003
Massachusetts 0.087 0.011 0.101 0.008 0.894 0.012 0.599 0.027 0.682 0.002 0.898 0.012 0.538 0.029 0.104 0.002
North Carolina 0.035 0.009 0.140 0.009 0.828 0.028 0.743 0.018 0.638 0.002 0.727 0.042 0.665 0.022 0.153 0.002
Wisconsin 0.042 0.007 0.089 0.007 0.788 0.018 0.788 0.015 0.648 0.003 0.471 0.036 0.582 0.025 0.093 0.002
Average 0.050 0.004 0.126 0.004 0.768 0.012 0.666 0.009 0.634 0.001 0.549 0.016 0.556 0.011 0.107 0.001

School Level Student Level

Source: Arkansas, Arizona, Florida, Kentucky, Massachusetts, North Carolina, and Wisconsin Departments of Education. a: Model includes the student pretest, the school 
mean of current students' pretest, and district mean of current students' pretest. b: Model includes gender, race, low SES indicator, English learner status, and school and 
district means of these covariates. c: Model produced a negative R2 and was truncated to 0. d: Standard error not computed.

Intraclass Correlations (ICCs) and R2estimates for Mathematics Achievement by States: Three-level Models, Grades 1-6
Unconditional Model Pretest  Covariatea Demographic Covariatesb

District Level School Level District Level School Level Student Level District Level



Table 7

ρ3 SE(ρ3) ρ2 SE(ρ2) R23 SE(R23) R22 SE(R22) R21 SE(R21) R23 SE(R23) R22 SE(R22) R21 SE(R21)
Grade and State
Grade 1

Arkansas 0.026 0.007 0.100 0.008 c d 0.593 0.028 0.059 0.003
Grade 2

Arkansas 0.034 0.008 0.098 0.008 0.466 0.047 0.753 0.019 0.467 0.004 0.493 0.045 0.720 0.021 0.080 0.003
Grade 3

Arkansas 0.034 0.008 0.107 0.009 0.698 0.032 0.716 0.022 0.473 0.004 0.715 0.031 0.547 0.030 0.114 0.003
Arizona 0.109 0.015 0.083 0.005 0.769 0.029 0.671 0.018 0.170 0.003
Kentucky 0.016 0.004 0.076 0.005 c d 0.466 0.027 0.074 0.002
Massachusetts 0.071 0.008 0.087 0.005 0.874 0.014 0.473 0.023 0.091 0.002
North Carolina 0.037 0.008 0.114 0.005 0.691 0.047 0.806 0.010 0.146 0.002
Wisconsin 0.029 0.004 0.069 0.004 0.715 0.024 0.597 0.019 0.092 0.002
Average 0.049 0.004 0.089 0.002 0.753 0.014 0.593 0.009 0.115 0.001

Grade 4
Arkansas 0.026 0.007 0.112 0.009 0.763 0.026 0.763 0.019 0.565 0.004 0.263 0.048 0.651 0.025 0.117 0.003
Arizona 0.127 0.017 0.081 0.005 0.989 0.002 0.721 0.016 0.596 0.003 0.861 0.018 0.741 0.015 0.153 0.003
Florida 0.026 0.007 0.138 0.005 0.945 0.013 0.909 0.004 0.522 0.002 0.782 0.045 0.820 0.008 0.078 0.001
Kentucky 0.013 0.003 0.084 0.005 0.692 0.039 0.509 0.026 0.480 0.003 c d 0.455 0.027 0.083 0.003
Massachusetts 0.107 0.011 0.113 0.006 0.930 0.008 0.596 0.020 0.512 0.003 0.848 0.017 0.370 0.025 0.106 0.002
North Carolina 0.042 0.008 0.111 0.005 0.965 0.006 0.906 0.005 0.610 0.002 0.712 0.045 0.822 0.009 0.161 0.002
Wisconsin 0.032 0.004 0.074 0.004 0.940 0.006 0.790 0.012 0.662 0.002 0.739 0.022 0.660 0.017 0.098 0.002
Average 0.053 0.003 0.102 0.002 0.889 0.007 0.742 0.006 0.564 0.001 0.701 0.014 0.646 0.007 0.114 0.001

Grade 5
Arkansas 0.033 0.009 0.099 0.009 0.756 0.027 0.811 0.016 0.604 0.004 0.399 0.049 0.741 0.021 0.128 0.004
Arizona 0.132 0.017 0.079 0.005 0.985 0.002 0.774 0.013 0.592 0.003 0.841 0.021 0.675 0.018 0.174 0.003
Florida 0.026 0.007 0.125 0.004 0.979 0.005 0.934 0.003 0.559 0.002 0.703 0.058 0.823 0.007 0.074 0.001
Kentucky 0.021 0.005 0.081 0.005 0.614 0.046 0.551 0.025 0.482 0.003 0.144 0.049 0.419 0.028 0.092 0.003
Massachusetts 0.093 0.010 0.096 0.006 0.975 0.003 0.663 0.019 0.550 0.003 0.907 0.011 0.473 0.025 0.113 0.002
North Carolina 0.048 0.009 0.111 0.005 0.960 0.007 0.904 0.005 0.591 0.002 0.726 0.043 0.815 0.009 0.151 0.002
Wisconsin 0.032 0.005 0.080 0.005 0.898 0.010 0.821 0.010 0.673 0.002 0.718 0.023 0.665 0.017 0.106 0.003
Average 0.055 0.004 0.096 0.002 0.881 0.008 0.780 0.006 0.579 0.001 0.634 0.015 0.659 0.007 0.120 0.001

Grade 6
Arkansas 0.027 0.009 0.091 0.011 0.776 0.025 0.779 0.021 0.578 0.004 0.163 0.043 0.765 0.022 0.139 0.004
Arizona 0.089 0.014 0.086 0.006 0.943 0.008 0.796 0.013 0.567 0.003 0.756 0.031 0.702 0.018 0.170 0.003
Florida 0.027 0.008 0.193 0.010 0.910 0.020 0.955 0.003 0.538 0.002 0.737 0.053 0.874 0.007 0.081 0.001
Kentucky 0.013 0.004 0.062 0.006 0.594 0.047 0.561 0.033 0.491 0.003 0.232 0.056 0.453 0.036 0.114 0.003
Massachusetts 0.090 0.011 0.096 0.008 0.932 0.008 0.741 0.019 0.565 0.003 0.941 0.007 0.652 0.024 0.128 0.002
North Carolina 0.041 0.010 0.101 0.007 0.913 0.015 0.888 0.008 0.608 0.002 0.662 0.050 0.846 0.011 0.174 0.002
Wisconsin 0.028 0.004 0.066 0.005 0.873 0.012 0.839 0.012 0.635 0.003 0.801 0.017 0.648 0.023 0.120 0.003
Average 0.045 0.003 0.099 0.003 0.849 0.009 0.794 0.007 0.569 0.001 0.613 0.015 0.706 0.008 0.132 0.001

School Level Student Level

Source: Arkansas, Arizona, Florida, Kentucky, Massachusetts, North Carolina, and Wisconsin Departments of Education. a: Model includes the student pretest, the school 
mean of current students' pretest, and district mean of current students' pretest. b: Model includes gender, race, low SES indicator, English learner status, and school and 
district means of these covariates.  c: Model produced a negative R2 and was truncated to 0. d: Standard error not computed.

Intraclass Correlations (ICCs) and R2estimates for Reading Achievement by State: Three-level Models, Grades 1-6
Unconditional Model Pretest  Covariatea Demographic Covariatesb

District Level School Level District Level School Level Student Level District Level



Table 8

ρ3 SE(ρ3) ρ2 SE(ρ2) R23 SE(R23) R22 SE(R22) R21 SE(R21) R23 SE(R23) R22 SE(R22) R21 SE(R21)
Grade and State
Grade 7

Arkansas 0.039 0.016 0.117 0.017 c d 0.535 0.039 0.591 0.004 0.436 0.048 0.597 0.036 0.092 0.003
Arizona 0.078 0.015 0.116 0.009 0.976 0.003 0.734 0.020 0.666 0.002 0.806 0.025 0.654 0.024 0.131 0.002
Florida 0.004 0.005 0.341 0.014 0.751 0.050 0.948 0.003 0.586 0.002 c d 0.844 0.009 0.082 0.001
Kentucky 0.020 0.007 0.093 0.009 0.416 0.057 0.598 0.034 0.624 0.003 0.148 0.050 0.397 0.042 0.099 0.003
Massachusetts 0.098 0.013 0.114 0.010 0.955 0.006 0.824 0.015 0.723 0.002 0.944 0.007 0.706 0.024 0.101 0.002
North Carolina 0.041 0.012 0.158 0.011 0.982 0.003 0.849 0.011 0.675 0.002 0.652 0.050 0.691 0.021 0.133 0.002
Wisconsin 0.043 0.007 0.098 0.009 0.882 0.011 0.837 0.013 0.685 0.002 0.322 0.038 0.683 0.022 0.103 0.003
Average 0.046 0.004 0.148 0.004 0.827 0.013 0.761 0.009 0.650 0.001 0.551 0.016 0.653 0.010 0.106 0.001

Grade 8
Arkansas 0.033 0.014 0.098 0.015 0.802 0.023 0.824 0.019 0.687 0.003 0.154 0.042 0.741 0.026 0.116 0.003
Arizona 0.066 0.013 0.126 0.009 0.942 0.008 0.809 0.015 0.657 0.002 0.738 0.033 0.558 0.028 0.118 0.002
Florida 0.006 0.007 0.378 0.014 0.687 0.060 0.976 0.001 0.658 0.001 0.008 0.021 0.843 0.009 0.101 0.001
Kentucky 0.019 0.007 0.095 0.009 0.738 0.034 0.746 0.024 0.665 0.003 0.120 0.046 0.416 0.042 0.093 0.003
Massachusetts 0.105 0.013 0.104 0.010 0.970 0.004 0.843 0.014 0.746 0.002 0.899 0.012 0.633 0.028 0.097 0.002
North Carolina 0.055 0.016 0.199 0.013 0.973 0.005 0.860 0.010 0.661 0.002 0.617 0.053 0.698 0.020 0.134 0.002
Wisconsin 0.036 0.007 0.089 0.008 0.938 0.006 0.789 0.016 0.704 0.002 0.721 0.023 0.484 0.030 0.099 0.002
Average 0.046 0.004 0.156 0.004 0.864 0.011 0.835 0.006 0.683 0.001 0.465 0.013 0.625 0.010 0.108 0.001

Grade 9
Arkansas 0.025 0.011 0.092 0.013 0.997 0.000 0.815 0.019 0.610 0.004 0.579 0.041 0.693 0.030 0.096 0.003
Florida 0.024 0.009 0.377 0.014 0.942 0.013 0.915 0.005 0.630 0.001 0.757 0.050 0.725 0.014 0.100 0.001

Grade 10
Arizona 0.083 0.026 0.219 0.022 0.842 0.027 0.691 0.032 0.099 0.002
Florida 0.007 0.008 0.418 0.015 0.744 0.052 0.884 0.007 0.586 0.002 0.220 0.086 0.695 0.017 0.102 0.001
Massachusetts 0.097 0.016 0.142 0.016 0.985 0.002 0.684 0.028 0.097 0.002
Wisconsin 0.040 0.006 0.066 0.007 0.806 0.018 0.740 0.021 0.637 0.003 0.610 0.031 0.679 0.025 0.115 0.002

Grade 11
Kentucky 0.001 0.004 0.080 0.009 c d 0.524 0.045 0.069 0.002

School Level Student Level

Source: Arkansas, Arizona, Florida, Kentucky, Massachusetts, North Carolina, and Wisconsin Departments of Education. a: Model includes the student pretest, the school 
mean of current students' pretest, and district mean of current students' pretest. b: Model includes gender, race, low SES indicator, English learner status, and school and 
district means of these covariates.  c: Model produced a negative R2 and was truncated to 0. d: Standard error not computed.

Intraclass Correlations (ICCs) and R2estimates for Mathematics Achievement by State: Three-level Models, Grades 7-11
Unconditional Model Pretest  Covariatea Demographic Covariatesb

District Level School Level District Level School Level Student Level District Level



Table 9

ρ3 SE(ρ3) ρ2 SE(ρ2) R23 SE(R23) R22 SE(R22) R21 SE(R21) R23 SE(R23) R22 SE(R22) R21 SE(R21)
Grade and State
Grade 7

Arkansas 0.029 0.011 0.085 0.012 c d 0.806 0.02 0.597 0.004 0.43 0.048 0.776 0.023 0.131 0.004
Arizona 0.075 0.014 0.097 0.008 0.949 0.007 0.877 0.01 0.589 0.003 0.843 0.021 0.791 0.016 0.178 0.003
Florida 0.013 0.008 0.224 0.011 0.932 0.015 0.981 0.001 0.549 0.002 0.614 0.07 0.903 0.006 0.079 0.001
Kentucky 0.009 0.004 0.074 0.007 0.596 0.047 0.705 0.027 0.521 0.003 0.132 0.048 0.508 0.039 0.113 0.003
Massachusetts 0.116 0.015 0.13 0.012 0.977 0.003 0.811 0.016 0.588 0.003 0.968 0.004 0.648 0.027 0.149 0.003
North Carolina 0.049 0.012 0.114 0.008 0.947 0.009 0.952 0.004 0.622 0.002 0.762 0.037 0.859 0.011 0.158 0.002
Wisconsin 0.027 0.004 0.069 0.006 0.895 0.01 0.891 0.009 0.635 0.003 0.694 0.025 0.836 0.013 0.111 0.003
Average 0.045 0.004 0.113 0.004 0.883 0.009 0.860 0.006 0.586 0.001 0.635 0.016 0.760 0.008 0.131 0.001

Grade 8
Arkansas 0.02 0.01 0.092 0.012 e d 0.804 0.02 0.586 0.004 0.143 0.041 0.752 0.025 0.142 0.004
Arizona 0.061 0.012 0.099 0.008 0.935 0.009 0.857 0.011 0.582 0.003 0.836 0.022 0.72 0.02 0.183 0.003
Florida 0.013 0.008 0.316 0.013 0.955 0.01 0.976 0.001 0.58 0.002 0.548 0.078 0.869 0.008 0.094 0.001
Kentucky 0.013 0.005 0.072 0.007 0.635 0.044 0.778 0.022 0.531 0.003 0.06 0.035 0.469 0.04 0.115 0.003
Massachusetts 0.106 0.013 0.101 0.01 0.988 0.002 0.834 0.015 0.594 0.003 0.892 0.013 0.754 0.02 0.14 0.003
North Carolina 0.044 0.012 0.136 0.01 0.963 0.006 0.958 0.003 0.62 0.002 0.763 0.037 0.853 0.011 0.176 0.002
Wisconsin 0.026 0.005 0.078 0.007 0.916 0.008 0.869 0.01 0.621 0.003 0.763 0.02 0.679 0.022 0.122 0.003
Average 0.040 0.004 0.128 0.004 0.899 ###### 0.868 0.005 0.588 0.001 0.572 0.015 0.728 0.009 0.139 0.001

Grade 9
Arkansas 0.02 0.011 0.079 0.012 e d 0.682 0.031 0.461 0.004 0.216 0.047 0.842 0.017 0.111 0.003
Florida 0.02 0.009 0.3 0.013 0.979 0.005 0.936 0.004 0.56 0.002 0.731 0.054 0.775 0.012 0.109 0.001

Grade 10
Arizona 0.067 0.024 0.197 0.022 0.949 0.009 0.799 0.022 0.166 0.003
Florida 0.001 0.004 0.333 0.013 0.812 0.04 0.966 0.002 0.549 0.002 c d 0.714 0.016 0.113 0.001
Kentucky 0.003 0.003 0.055 0.006 c d 0.533 0.045 0.104 0.003
Massachusetts 0.106 0.018 0.168 0.018 e d 0.717 0.026 0.153 0.003
Wisconsin 0.034 0.005 0.065 0.006 0.887 0.011 0.755 0.02 0.588 0.003 0.797 0.019 0.648 0.026 0.116 0.002

School Level Student Level

Source: Arkansas, Arizona, Florida, Kentucky, Massachusetts, North Carolina, and Wisconsin Departments of Education. a: Model includes the student pretest, the school 
mean of current students' pretest, and district mean of current students' pretest. b: Model includes gender, race, low SES indicator, English learner status, and school and 

district means of these covariates.   c: Model produced a negative R2 and was truncated to 0. d: Standard error not computed. e: Model produced a greater than 1 R2 and 
was truncated to 1.

Intraclass Correlations (ICCs) and R2estimates for Reading Achievement by State: Three-level Models, Grades 7-10
Unconditional Model Pretest  Covariatea Demographic Covariatesb

District Level School Level District Level School Level Student Level District Level


