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Abstract 
 
I characterize the prevailing philosophy of official statistics as a design/model compromise (DMC). It is design-
based for descriptive inferences from large samples, and model-based for small area estimation, nonsampling errors 
such as nonresponse or measurement error, and some other subfields like ARIMA modeling of time series. I suggest 
that DMC involves a form of “inferential schizophrenia”, and offer examples of the problems this creates. An 
alternative philosophy for survey inference is calibrated Bayes (CB), where inferences for a particular data set are 
Bayesian, but models are chosen to yield inferences that have good design-based properties. I argue that CB resolves 
DMC conflicts, and capitalizes on the strengths of both frequentist and Bayesian approaches.  Features of the CB 
approach to surveys include the incorporation of survey design information into the model, and models with weak 
prior distributions that avoid strong parametric assumptions. I describe two applications to U.S. Census Bureau data.  
 
Keywords: Bayesian statistics, frequentist statistics, likelihood principle, robust models, model checking, statistical 
inference. 
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1. Introduction 
 
The mission of official statistics is to produce relevant, timely and credible statistics about key social and economic 
phenomena. Statistical agencies face increased demand for data products, and the questions asked by our society are 
becoming increasingly complex and hard to measure. On the other hand, individuals and organizations are less 
willing to respond to requests for information, voluntary or not. Surveys and censuses are expensive and challenging 
to mount. Combining information from a variety of data sources is attractive in principle, but difficult in practice. 
Disseminating information for small areas is subject to the dangers from disclosure of confidential information from 
respondents.  For these reasons, the standard statistical approach of taking a random sample of the target population 
and weighting the results up to the population no longer meets our needs. We should see the traditional survey as 
one of an array of data sources, including administrative records, and other information gleaned from cyberspace. 
Tying this information together to yield cost-effective and reliable estimates requires modern statistical analysis 
tools.  
 
In response to these challenges, the U.S. Census Bureau has recently formed a new Research and Methodology 
Directorate. I am its first Associate Director, and I write as the first Bayesian statistician with a senior leadership 
position at the Census Bureau, and as one who has great respect for the history and statistical traditions of the 
agency.  
 
One of my responsibilities is to uphold statistical standards, and this role has led me to ponder the prevailing 
statistical philosophy of the agency, which I believe many other official statistical agencies share. I feel that some of 
the obstacles faced by official statistics are attributable to the ambivalence of this prevailing philosophy. I suggest 
that an alternative statistical philosophy, calibrated Bayes, provides a better vehicle for official statistics in the 
future.  
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2. The Prevailing Philosophy of Statistical Inference in Official Statistics. 
 
Official statistics is largely concerned with censuses and surveys, with a strong emphasis on probability sampling. 
There are three main competing general philosophies of inference from probability sample surveys (e.g. Little and 
Rubin 1983; Little 2004): (a) Design or randomization-based inference, (b) model-based superpopulation inference, 
and (c) Bayesian inference.   
 
2.1. Design-based inference. The classical randomization or design-based approach to survey inference (e.g. 
Hansen, Hurwitz and Madow 1953, Kish 1965, Cochran 1977) has the following main features. For a population 
with N units, let 1( ,..., )NY y y  where iy  is the set of survey variables for unit i, and let 1( ,..., )NI I I denote the 

set of inclusion indicator variables, where 1iI   if unit i is included in the sample and 0iI   if it is not included. 

Design-based inference for a finite population quantity ( )Q Q Y   involves (a) the choice of an estimator 

incˆ ˆ( , )q q Y I , a function of the observed part incY  of Y, that is unbiased, or approximately unbiased, for Q with 

respect to the distribution I; and (b) the choice of a variance estimator incˆ ˆ( , )v v Y I  that is unbiased or 

approximately unbiased for the variance of q̂  with respect to the distribution of I. Inferences are then generally 

based on normal large-sample approximations. For example, a 95% confidence interval for Q is ˆ ˆ1.96q v .  

 
Models can and often do play a role in determining the choice of estimator in this approach. Specifically, regression 
or ratio estimates are based on implicit models, and model-assisted methods such as generalized regression (Särndal, 
Swensson and Wretman, 1992) incorporate model predictions. However, these methods are still fundamentally 
design-based, since the distribution of I remains the basis for inference.  
 
2.2. Model-based inference. The model-based approach bases inference on a model for the distribution for Y, 
perhaps combined with distribution of I. Initial model formulations did not overtly assign a distribution for I, but 
modeling both Y and I allows assumptions about the method of selection to be formalized, and clarifies the value of 
probability sampling. The model is used to predict the non-sampled values of the population, and hence finite 
population quantities Q. There are two major variants: superpopulation modeling and Bayesian modeling.  
 
In superpopulation modeling (e.g. Royall 1970; Thompson 1988; Valliant, Dorfman, and Royall 2000), the 
population values of Y are assumed to be a random sample from a “superpopulation”, and assigned a probability 
distribution ( | , )p Y Z   indexed by fixed parameters  , and conditioned on known design variables Z.  

 
Bayesian survey inference (Ericson 1969, 1988; Basu 1971; Scott 1977; Binder 1982; Rubin 1983, 1987; Ghosh and 
Meeden 1997; Sedreansk 2008; Little 2003, 2004; Fienberg 2011) requires the specification of a prior distribution 

( | )p Y Z  for the population values. Inferences for finite population quantities ( )Q Y  are then based on the posterior 

predictive distribution exc inc( | , , )p Y Y Z I of the non-sampled values (say excY ) of Y, given Z and the sampled values 

incY .  Probability sampling allows us to “ignore” the distribution of the sample inclusion indicator I in this model, 

and base inferences on posterior predictive distribution exc inc( | , )p Y Y Z , simplifying the modeling task. The 

specification of the prior distribution ( | )p Y Z  is often achieved via a parametric model ( | , )p Y Z   indexed by 

parameters  , combined with a prior distribution ( | )p Z  for  , that is: 

 ( | ) ( | , ) ( | )p Y Z p Y Z p Z d    . 

The posterior predictive distribution of excY  is then  

 exc inc exc inc inc( | , ) ( | , , ) ( | , )p Y Y Z p Y Y Z p Y Z d     (1) 

where inc( | , )p Y Z  is the posterior distribution of the parameters, computed via Bayes’ Theorem: 

 inc inc inc( | , ) ( | ) ( | , ) / ( | )p Y Z p Z p Y Z p Y Z   , 

where ( | )p Z  is the prior distribution, inc( | , )p Y Z   is the likelihood function, viewed as a function of  , and 

inc( | )p Y Z  is a normalizing constant. This posterior distribution induces a posterior distribution inc( | , )p Q Y Z  for 
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finite population quantities ( )Q Y .  

 
Some Bayesians have downplayed the importance of randomization, but this becomes clear when the model is 
expanded to the joint distribution of Y and I, as in the above summary. Randomization provides a practical way to 
assure that the selection or allocation mechanisms are ignorable for inference Rubin 1978, Sugden and Smith 1984, 
Gelman et al. 2003, chapter 7), without making ignorable selection a questionable assumption. On the other hand, 
making randomization the basis for inference, as with the design-based approach, is restrictive, since it does not 
provide a framework for handling deviations from randomization, or other non-sampling errors. 
 
The specification of ( | , )p Y Z   in the Bayesian formulation is the same as in parametric superpopulation modeling, 

and in large samples, the likelihood based on this distribution dominates the contribution from the prior distribution 
of  . As a result, large-sample inferences from the superpopulation modeling and Bayesian approaches are often 
similar, with the key distinction then being between design-based and model-based inference. Bayes modeling is to 
my mind superior to superpopulation modeling in small samples, since the integration over   in (1) propagates 
uncertainty in the estimation of  , yielding better inferences than approaches that fix   at an estimate.  
 
2.3. The Current Design/Model Compromise. A recent comparative assessment of these approaches is given in 
Rao (2011).The status quo for statistical inference at the U.S. Census Bureau is a combination of design-based and 
model-based ideas, which I shall term the “design/model compromise” (DMC); I believe that a similar philosophy 
pervades other official statistical agencies. DMC applies design-based inference for descriptive statistics like means 
and totals in large samples, and models are used for small area estimation, to handle survey nonresponse, and in 
some specialized areas like time series analysis (e.g. Kalton 2002; Rao 2003, 2011). The design-based approach is 
often model assisted, in that models are used to incorporate auxiliary information. A common form of model 
assistance is regression calibration, where model predictions are adjusted by adding design-weighted residuals to 
protect against misspecification, (e.g. Cassell, Särndal, Wretman 1977; Särndal, Swensson and Wretman 1992).  
 
Models are used for small area estimation, since direct design-based estimates are too imprecise to be useful. An 
important early example is Fay and Herriott (1979). Models are used for nonresponse, though sometimes they are 
implicit, as in hot deck methods.  In time series analysis, models are commonly used to smooth and summarize 
series of estimates collected over time.  
 
Design-based and model-based systems of statistical inference both have strengths and weaknesses, and the key is to 
combine them in a way that capitalizes on their strengths. For reasons given below, I do not think that DMC is the 
best way to do this. In the next section, I describe an alternative approach, Calibrated Bayes (CB), which avoids 
“inferential schizophrenia” by assigning distinct roles to models (for the inference) and frequentist methods (for 
formulating and assessing the model).   
 
3. Calibrated Bayesian (CB) Inference. 
 
3.1 Calibrated Bayes Inference for Statistics in General. In CB, all inferences are explicitly Bayesian and hence 
model-based, but models are chosen to yield inferences that are well calibrated in a frequentist sense; specifically, 
models are sought that yield posterior credibility intervals with (approximately) their nominal frequentist coverage 
in repeated sampling. Arguments in favor of CB have been presented elsewhere (Little 2006, 2011), so I summarize 
them here, specifically in the context of survey sample inference.  
 
Frequentist inference is in essence a set of concepts, like unbiasedness, consistency, confidence coverage, efficiency, 
and robustness, for assessing properties of inference procedures. It is not a prescriptive system leading to a clear 
choice of estimator and inferential procedure. Of the many frequentist tools, such as least squares, method of 
moments, generalized weighting equations or maximum likelihood (ML), asymptotic inferences based on ML seem 
the closest to being prescriptive, but ML is not satisfactory for small sample inference. Exact small-sample 
inferences have been developed for some problems, but in many others there is no exact frequentist method, in the 
sense of yielding a confidence interval that has exact nominal confidence coverage for all values of the unknown 
parameters.   
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Design-based survey inferences are not only asymptotic, they fail for probability sampling schemes where the 
number of distinct repeated samples is limited. For example, consider systematic sampling of units with a sampling 
interval of five, from a random start. The design-based standard error exists, but design-based estimates of standard 
error are not available, and since there are only five possible repeated samples and hence five possible estimates, 
design-based 90% or 95% confidence intervals do not exist. Models are needed to create and provide meaning to 
interval estimates. 
 
Frequentist inference violates the likelihood principle (Birnbaum 1962), and is ambiguous about whether to 
condition on ancillary or approximately ancillary statistics when performing repeated sampling calculations (Cox 
1971; Cox and Hinkley 1974). In the sample survey context, this issue arises in the question of whether the sampling 
distribution of post-stratified means should condition on post-stratum counts (Holt and Smith 1979; Little 1993).  
 
The Bayesian approach avoids these problems with frequentist inference. Once a model and prior distribution are 
specified, there is a clear path to inferences based on the posterior distribution, or optimal estimates for a given 
choice of loss function. Problems of inference under a model become purely computational, and a rich array of 
Bayesian computational tools are now available, even for complex high-dimensional problems. The likelihood 
principle is satisfied, issues about conditioning on ancillary statistics do not arise, and uncertainty about nuisance 
parameters is propagated by integrating them over their posterior distribution, an approach that (with noninformative 
prior distributions) leads to better small-sample inferences than ML. In the simplest case of a normal model and 
simple random sampling, integrating out the variance leads to t corrections.  
 
The problem with Bayesian inference in practice is that it generally requires full specification of a likelihood and 
prior, and we never know the true model (Efron 1986). All models are wrong, and bad models lead to bad answers: 
under the frequentist paradigm, the search for procedures with good frequentist properties provides a degree of 
protection against model misspecification, but there seems no such built-in protection under a strict Bayesian 
paradigm where frequentist properties are not entertained.  
 
We want model-based inferences with good frequentist properties, such as 95% credibility intervals that cover the 
unknown parameter approximately 95% of the time if the procedure was applied to repeated samples. The Bayesian 
has some important tools for model development and checking, like Bayes factors and model averaging, but in my 
view frequentist ideas are essential when it comes to model development and assessment. A natural compromise is 
thus to use frequentist methods for model development and assessment, and Bayesian methods for inference under a 
model. This capitalizes on the strengths of both paradigms, and is the essence of Calibrated Bayes (CB) (Peers 1965; 
Welch 1965; Dawid 1982; Box 1980; Rubin 1984; Draper and Krnjajic 2010).  Rubin (1984) wrote that 
 
“The applied statistician should be Bayesian in principle and calibrated to the real world in practice – appropriate 
frequency calculations help to define such a tie…  frequency calculations are useful for making Bayesian statements 
scientific, scientific in the sense of capable of being shown wrong by empirical test; here the technique is the 
calibration of Bayesian probabilities to the frequencies of actual events.” 
 
3.2. Calibrated Bayes Inference for Sample Surveys. What are the implications of CB for sample survey 
inference? The main features that distinguish survey sampling inference from other areas of statistics are (a) the 
focus on descriptive finite population quantities (though analytic parameters are also of interest) and (b) the presence 
of survey design features like stratification, weighting and clustering, which render simple “iid” assumptions invalid.  
 
Bayesian inference is very suited to finite population quantities; the tool is the posterior predictive distribution. This 
distribution automatically incorporates finite population corrections – the uncertainty in the posterior predictive 
distribution goes to zero as the sampling fraction goes to one. The target population quantity does not need to be a 
parameter of the CB model used for inference; it could be the quantity obtained by applying a “target model” to the 
full population. CB inference is then based on the posterior predictive distribution of this finite population quantity, 
for an “analysis model”, which captures key features of the sample design, and which may differ from the target 
model. This point is developed in the context of multiple regression in Section 4.2 below.  
 
Concerning (b), the need for calibration, combined with the appreciation that all models are approximations and 
hence to some degree misspecified, leads to Bayesian models that incorporate design features like stratification, 
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weighting and clustering. Design features cannot be ignored in the model, because including them protects the 
model against misspecification.  
 
Specifically, models for cluster samples that assume units within clusters are independent overstate precision when 
outcomes of units within clusters are correlated. Thus, hierarchical Bayes models that include random effects for 
clusters, as in the seminal work of Scott and Smith (1969), are needed to model clustering of the sample. Models for 
stratified unequal probability samples that do not allow distinct parameters across strata make the dubious 
assumption that strata variables are unrelated to outcomes. Thus, stratified samples require models that include strata 
indicators as covariates. For probability proportional to size samples, models that misspecify the relationship 
between the outcome and size are not well calibrated.  Robust modeling of this relationship, for example by 
modeling the outcome as a spline function of size, avoids this problem, and has been shown to yield Bayesian 
inferences with superior frequentist properties to sample-weighted estimates in simulations (Zheng and Little 2004, 
2005; Yuan and Little 2007, 2008; Chen, Elliott and Little 2010).  
 
Frequentist concepts like design consistency or asymptotic design unbiasedness  (Brewer 1979; Isaki and Fuller 
1982) are useful in developing CB models, particularly for inference with large samples where asymptotic properties 
are relevant. Strictly speaking, design-consistency of  estimates is not a requirement of CB, since a design-
inconsistent Bayes estimate for a well-specified model can still achieve good frequentist coverage. However, design-
consistency plays a role in CB as a useful robustness property that tends to promote good confidence coverage, 
particularly in large samples; the class of Bayesian models that yield design consistent estimates is very broad, so 
design inconsistency is relatively easy to achieve under the CB paradigm.  
 
Other features of CB models for surveys are that (a) relatively weak prior distributions should be favored so that the 
evidence in the data overshadows the evidence in the prior; and (b) model checks become an important feature of the 
analysis. The latter point should not be controversial, since any statistical approach, frequentist or Bayesian, needs to 
evaluate assumptions. Diagnostic approaches include posterior predictive checks (Rubin 1984, Gelman, Meng and 
Stern 1996), and cross-validation approaches (Draper 1995; Draper and Krnjajic 2010). The following simple 
examples from Little (2003) illustrate these ideas. 
 
Example 1. Stratified random sampling. Suppose the population with units i = 1, …, N is divided into H strata 
and hn  units are randomly selected without replacement from the population of hN  units in stratum h. Define Z  as 

a stratum variable, with iz h  if unit i is in stratum h. A CB model for an outcome Y that conditions on the stratum 

variables iz  is  

 2 2[ | , { , }] ~ ( , )i i h h ind h hy z h G    , (2) 

 
where G(a, b) denotes the normal (Gaussian) distribution with mean a, variance b. Suppose first 2

h  is known and 

the stratum mean are assigned a flat prior  
( | ) const.hp Z   

Bayesian calculations lead to the posterior predictive distribution for the population mean Y : 
2 2

st st[ | ,data, { }] ~ ( , )hY Z G y  , 

the normal distribution with posterior mean: 

st
1

, / ,  
H

h h h h h
h

y P y P N N y


   sample mean in stratum h, 

and posterior variance: 

2 2 2
st

1

(1 ) / , / .
H

h h h h h h h
h

P f n f n N 


    

These Bayesian results lead to Bayes posterior credibility intervals that are identical to standard confidence intervals 
from design-based inference for a stratified random sample. In particular, the posterior mean weight each case by the 
inverse of its inclusion probability, and the posterior variance equals the design-based variance of the stratified 
mean.  
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With unknown variances, the posterior distribution of Y  for this model with a uniform prior on 2log( )h is a mixture 

of t distributions, yielding improved frequentist coverage in small samples because uncertainty in estimating the 
stratum variances is propagated.   
 
Suppose, on the other hand, we ignore stratum effects, that is we assume ,h h      in Eq. (2). The posterior 

mean of Y  is then the unweighted sample mean, which is potentially very biased if the sampling rates vary across 
the strata. The problem is that inferences from this model are non-robust to violations of the assumption of no 
stratum effects, and we expect stratum effects in most settings. The CB perspective leads to a model like (2) that 
allows for stratum effects.  
 
Example 2. Two-stage sampling. Suppose the population is divided into C clusters, based for example on 
geographical areas. A simple form of two-stage sampling first selects a simple random sample of c clusters, and then 
selects a simple random sample of cn of the cN  units in each sampled cluster c. The inclusion mechanism is 

ignorable conditional on cluster information, but a CB model needs to account for within-cluster correlation in the 
population. A normal model that does this is: 
 

 2 2

 outcome for unit  in cluster , 1,..., ; 1,..., .

[ | , ] ~ ( , ),

[ | , ] ~ ( , ).

ci c

ci c ind c

c ind

y i c i N c C

y G

G

   
    

  

 (3) 

 
Unlike the model for stratified sampling in Eq. (2), the cluster means cannot be assigned a flat prior, ( ) constcp   , 

because only a subset of the clusters are sampled; the uniform prior does not allow information from sampled 
clusters to predict means for non-sampled clusters. The model that assumes no cluster effects, 0   in (3), yields 

poor confidence coverage in the presence of cluster effects, particularly in highly clustered samples. If the first stage 
clusters are sampled with probability proportional to size, a CB model needs to include the size variable as a 
covariate in Eq. (3), as in Zheng and Little (2004). 
 
4. DMC and CB Perspectives on Some Analysis Issues.  
 
4.1. Design-based statistical standards meet model-based analysis.  The statistical standards at the U.S. Census 
Bureau are essentially design-based, whereas many Census Bureau researchers are social scientists targeting 
substantive journals in disciplines such as economics and demography, where statistical models are the norm. This 
difference in underlying philosophy leads to confusion and conflict. The statistical standard-bearers play the role of 
high priests in a religion that many social scientists have not embraced. 
 
If, on the other hand, statistical standards were written from a CB perspective, the inference would always be model-
based, greatly reducing the communication gap between social science modelers and standard-setters; the role of 
design features in the analysis is to find robust and well-specified models. The fact that the inference is Bayesian is 
admittedly a departure for modelers more versed in superpopulation frequentist modeling. The gap may not be as 
large as sometimes suggested – for example, economists act very much like Bayesians, in the sense that prior 
judgment enters strongly into model specification through variable selection, assumptions about instrumental 
variables, exclusion restrictions, and so on. The additional information injected by being formally Bayesian is often 
minor compared to the assumptions required to identify models, especially when diffuse prior distributions are 
chosen. 
 
Bayesian inferences have repeated sampling properties, like any other inferential procedures. All modelers interested 
in obtaining robust inferences should embrace the calibrated part of CB. In the finite population context, estimates 
for a model fitted to the sample should be close to the estimates that would be obtained if that model were fitted on 
the entire population. One way of achieving this is to incorporate features of the sample design, such as weighting 
and clustering, into the model, since ignoring features like the design weights yields inferences that are vulnerable to 
model misspecification (Kish and Frankel 1974; Holt, Smith and Winter 1980; Hansen, Madow and Tepping 1983; 
Pfeffermann and Holmes 1985). 
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4.2. Role of sampling weights in regression. The conflict between design-based statisticians and modelers arises in 
the role of sampling weights. A design-based analysis weights units in the regression analysis by the inverse of their 
selection probability (Horvitz and Thompson, 1952), but this form of weighting is seen as unnecessary in many 
branches of economics, where extrapolation to a population is not the primary aim, and weights, if used at all, model 
non-constant variance (Konjin 1962; Brewer and Mellor 1973; Dumouchel and Duncan 1983; Smith 1988; 
Pfeffermann 1993, Little 2004).  
 
From a CB viewpoint, it is useful to distinguish the case where the variables defining the sampling weights (e.g. the 
strata indicators in Example 1 above) are or are not included as predictors in the model. If they are, then design 
weighting is unnecessary if the model is correctly specified. However, from a CB perspective, a comparison of 
estimates from the weighted and unweighted analysis provides an important specification check, since a serious 
difference between a design-weighted and unweighted estimate is a strong indicator of misspecification of the 
regression model. Since specification checks for the hard problem of selection on unobservables are popular in 
econometrics (e.g. Heckman 1976), we should welcome checks for the much easier problem of selection on 
observables! Dumouchel and Duncan (1983) propose a test comparing the weighted and unweighted regression 
coefficients, and extensions of this idea to other complex survey designs would be useful; also determining what 
constitutes a “serious” difference between weighted and unweighted estimates is not obvious.  
 
If the variables defining the weights are not included as predictors in the regression model, the design-weighted 
regression is a simple way of correcting for selection bias in the sample. In fact, the design-weighted estimates have 
an interpretation as approximate posterior means for a CB model, as in the following example (Little 1991, 2004). 
This example also illustrates the distinction between a target model and an analysis model mentioned in Section 3.2. 
 
Example 3. Distinct target and analysis models, leading to a Bayesian interpretation of design-weighted 
regression estimates. I noted in Section 3.2 that the target quantity in a CB analysis does not have to be a parameter 
in a CB model (or its finite population equivalent).  It is useful to distinguish a target model, which determines the 
target quantity of interest, and the analysis model, the basis for inferences about the target quantity.  
 
Consider first inference about a population mean from a stratified sample, as in Example 1. The target model 
assumes the outcome iy  for unit i has a mean that does not depend on stratum, and a non-constant variance, namely 

 
Target model: 2 2[ | , , { , }] ~ ( , / )i i i i ind iy u z h G u    , (4) 

 
where iu  is a known constant. The target quantity is the result of applying this model to the whole population with 

an uninformative prior, namely the precision-weighted mean: 

 ( )

1 1

/
jNN

u
i i i

i i

Y u y u
 

  
        
  . (5) 

This is the finite population mean if 1iu   for all i, but other choices of { }iu  lead to useful target quantities. For 

example, if /i i iy x u  then Eq. (4) defines the ratio model, and Eq (5) is the population ratio    1 1
/ jN N

i ii i
x u

   .  

 
A standard design-based approach weights cases in stratum j by their sampling weight /j j jw N n , yielding 

design-unbiased estimates of  the numerator and denominator of Eq. (5): 

 ( *) * *

1 1 1 1

/ /
j j j j

J J J J
w

j i i j i ji i ji
j i s j i s j i s j i s

y w u y w u w y w
       

       
               
       
      , (6) 

where *
ji j iw w u  is the product of the sampling weight and the precision weight. This estimator can also be 

motivated as an approximate posterior mean under a CB model, as follows: 
 
The target model (4) ignores the stratified nature of the sample, and for inference purposes it is vulnerable to 
misspecification if the means of Y and selection rates vary across the strata. Thus for inference about (5), we replace 
(4) by an analysis model that allows different parameters for the mean and variance in each stratum, that is: 
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Analysis model: 
 

2 2
ind

2

[ | ,{ , }) ~ ( , / ),

{ , log } const.

i i j j j j i

j j

y z j G u

p

   

 




 (7) 

 
This model yields a posterior predictive distribution for the nonsampled values, and hence for the target quantity (5). 
If { }iu  are known for all units of the population, a standard Bayesian calculation yields 

 ( ) ( )

1 1

( | data,{ }) / ,
J J

u u
i j j j

j j

E Y u y u u 
 

   
    
   
   

where ( ) /
j j

u
j i i ii s i s

y u y u
 

    is the precision-weighted mean of the sampled units ji s  in stratum j, and ju  is 

the sum of  { }iu  for all units i in stratum j. If { }iu  are only known for sampled units of the population, a model is 

also needed to predict values for nonsampled units. A variety of models for { }iu  that involve distinct means in each 

stratum yield a posterior mean of the total in stratum j of the form   | data
j

j j ii s
E u w u 

  , where /j j jw N n  

is the sampling weight for stratum j. Then  
  

   

( ) ( )

1 1

( )

1 1

( ) * * ( *)

1 1 1 1

( | data) / | data

| data / | data

/ / ,
j j j j

J J
u u

j j j
j j

J J
u

j j j
j j

J J J J
u w

j j i j i ji i ji
j i s j i s j i s j i s

E Y E y u u

y E u E u

y w u w u w y w y

 
 

 
 

       

    
     

     
   

    
   
   

        
   

 

 

     

 

 
the design-weighted estimator (6). The approximation in the second line of this expression results from replacing the 
posterior expectation of a ratio by a ratio of posterior expectations, which ignores terms of order (1/ )O n . Hence, 

under this formulation, the CB approach leads to weighting by the product of the sampling weight and precision 
weight, as in the design-based approach.  
 
An extension of this analysis yields design-weighted estimates for regression coefficients. Consider more generally 
the target regression model 
 
Target model: 1 2( | , ) ~ ( , )Y X G X U   , (8) 

 
where Y consists of the population elements as an ( 1)N   vector, X  is an ( )N p  matrix of covariates, and U is a 

( )N N  diagonal matrix with the value { }iu  on the diagonal. The target quantities are the precision-weighted least 

squares estimates: 
 ( ) 1( )u T TB X UX X UY . (9) 

For inference about (9), we assume an analysis model that allows different stratum regression coefficients, namely 

Analysis model: 
 

1 2

2

( | , ) ~ ( , )

{ , log } const.

j j j j j j j

j j

Y X G X U

p

  

 




. (10) 

where 
jY , 

jX  are the components of Y and X in stratum j, with dimension ( 1)jN   and ( )jN p  respectively. An 

approximation to the posterior mean of ( )uB  under (10) is obtained by writing (9) as a function of sums 
( )

1( ,..., )u
LB g T T , where 

1 1
{ , 1,..., }jJ N

ji jij i
T u h L

 
     , for difference choices of { }jih  represent the set of 

sums, sums of squares, and sums of cross products of the covariates and outcome. Then  

    ( )
1 1( | data) ( ,..., | data ( | data),..., ( | data) (1/ )u

L LE B E g T T g E T E T O n  
 

by a linearization argument similar to that used for design-based inference. Also, 
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 *

1

( | ) ,
j

J

ji ji
j i s

E T data w h
 

    

where *
ji j jiw w u  and 

jw  is the sampling rate in stratum j, applying an argument similar to that for the mean model 

to { }jih . Hence the posterior mean is approximated by the design-weighted regression estimates: 

 ( ) * 1 *( | ) ( )u T T
s s s s s sE B data X W X X W Y , (11) 

where the subscript s denotes sample quantities (Little 2004).  
 
Can sampling weights be ignored when interest lies in “analytic” inference for the parameters   of the target model 

(10), rather than in the finite population quantity (9)? I would say no, Eq. (11) should still be used to estimate  . 

The inference differs only in the omission of finite population corrections, which follows directly from the 
application of Bayes’ theorem. My reason is that the finite population is assumed to be a random sample from the 
superpopulation under the superpopulation model, so   differs from the finite population quantity  ( )uB   by a 

(small) quantity of order (1/ )O N . Since ignoring the sampling weights yields a poor estimate of ( )uB , it also yields 

a poor estimate of  . 

 
What is gained by the CB approach if the analysis model (10) merely recovers the design-based estimator? The 
Bayesian paradigm allows for better small-sample inferences, by propagating error in estimating the variances, and 
by allowing the possibility of shrinkage of the weights by mixed models.  
 
4.3. DMC and CB for small area estimation.  The DMC philosophy suggests that when there are sufficient data to 
support “direct” estimates that do not borrow strength across subdomains, inferences are design-based, but when the 
data are too limited then model-based small area estimates are acceptable. This dichotomy implies, for any particular 
survey, the existence of a tipping point (say 0n ), the “point of inferential schizophrenia”, such that inferences are 

design-based when 0n n  and model-based when 0n n . The choice of 0n  is of course rather arbitrary, and it 

bothers me that one’s entire philosophy of statistics, and the nature of the estimator, changes depending on where 
the sample size falls relative to this value (Figure 1A).  
 
The CB philosophy avoids “inferential schizophrenia” since all inferences are model-based. Hierarchical Bayes 
models yield estimates close to “direct” estimates when sample sizes are large, and as the sample size decreases, 
move seamlessly towards predictions from a fixed-effects model (Figure 1B). Consider, for example, the following 
simple hierarchical Bayes model for simple random sampling, relating an outcome Y to a covariate X measured for 
all units in the population: 

 
2

2

| ~ ( , ), ,

~ ( , ),

ai a ai ai a ai

a

y N x

N

     

  

 
 (12) 

where ,ai aix y  are the value of Y and X for unit i in area a, and a  is a random intercept for area a. (A more complex 

model would entertain interactions between the areas and covariates). If the sampling fraction in area a is small, the 

posterior mean of the population mean aY  in area a given 2 2( , )   has the form 

 ˆ( | data) (1 )( ( )a a a a aE Y w y w y x X     , (13) 

where , ,a a ay x n  are the sample means of Y and X and sample size in area a, ˆ( ( )ay x X   is the regression 

prediction for the mean of Y aggregated over all areas, and 2 2 2/ ( )a a aw n n     assigns most of the weight to the 

sample mean when an  is large, and most of the weight to the regression prediction over all areas when  an  is small.  

 
The weights here depend on the variances, which in practice need to be estimated. Empirical Bayes approaches 
replace the variances by point estimates, typically computed by the method of moments or maximum likelihood. 

When the estimate of 2  goes negative, it is replaced by a value 0 on the boundary of the parameter space. 
Uncertainty in the variance estimates is not reflected in inferences. Fully Bayes methods based on weak priors on the 
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variance components propagate uncertainty and avoid estimates on the boundary of the parameter space, though care 

is need with the choice of prior distribution for 2  (Gelman 2006).  
 
What precisely is the role of CB in small area estimation? Essentially, that Bayes is preferable to empirical Bayes 
because it addresses uncertainty in the variance components, and as a result, it tends to be better calibrated, that is, 
yields credibility intervals with better confidence coverage. Two other related issues are that (a) model-based 
estimators have a bias that does not necessarily vanish with increasing sample size, and that can be substantial and 
dominate the MSE if the model fails; and (b) CB for small areas yields estimates that do not necessarily sum to 
design-based estimates for higher levels of aggregation. My view is that “design consistency”, not “design bias”, is 
the important issue, since the essence of shrinkage estimates is that exact unbiasedness is secondary to mean squared 
error. Prediction estimates under any particular CB model are automatically internally consistent, since predictions 
of quantities at high levels of aggregation are sums of the predictions at lower levels. Design inconsistent estimates 
from a CB model may be adequately calibrated for small areas, because design bias is not an important component 
of mean squared error; but design bias from model misspecification becomes an issue when these small area 
estimates are aggregated to higher levels. Thus, if aggregation to higher levels is important, then I recommend 
seeking a CB model that yields design-consistent estimates.  

 
4.4. CB for small area inference: fixing the “standard error error”. Official statistics often presents uncertainty 
in the form of standard errors or margins of error. In particular, users of the U.S. American Community Survey 
(ACS) have the ability to generate tables of estimated counts of individuals by race, age and gender, in small areas. 
Results are reported by an estimate and a margin of error, chosen so that the estimate plus or minus the margin of 
error is asymptotically a 90% confidence interval. However, in many instances the margin of error is larger than the 
estimate, yielding intervals containing negative counts of people! The ACS documentation suggests truncating the 
resulting intervals so that they are bounded below by zero, but the confidence interval based on the margin of error 
still fails to have the nominal coverage in small samples, since it is based on a large-sample design-based 
approximation. 
 
This exemplifies a general weakness of design-based inferences – that they are too focused on estimates and 
standard errors, assuming that we are in the “land of asymptotia” where an estimate plus or minus two standard 
errors is truly a 95% confidence interval. We learn in elementary statistics that this is false when the sample size is 
small, as when a t correction is applied to a normal test or confidence interval when the variance is not known. In 
simulation studies with realistic sample sizes, design-based confidence intervals often fail to achieve the nominal 
coverage  (e.g. Zheng and Little 2004, 2005; Yuan and Little 2007, 2008; Chen, Elliott and Little 2010). A 
comprehensive theory for finite samples should be able to deal with small sample sizes, and (as discussed below) the 
simplest general way to achieve this is to make the inference Bayesian. The concern is that the introduction of the 
prior distribution adds subjective information, but Bayes credibility intervals with noninformative priors tend to be 
more, not less, conservative than design-based confidence intervals. 
 
In particular, it is well known that asymptotic Wald confidence intervals for proportions do not achieve nominal 
coverage when the sample size is small, particularly for proportions close to zero or one (Brown, Cai and DasGupta, 
2001).  Simple fixes such as the Wilson estimate, which for a 95% interval adds 2 to the numerator and 4 to the 
denominator of the proportion (Agresti and Coull 1998), have a Bayesian interpretation. The Bayesian posterior 
credibility interval based on a noninformative Jeffreys’ prior distribution is constrained to lie between 0 and 1, is 
appropriately asymmetric when the estimate is close to zero or one, and has better confidence coverage than the 
asymptotic Wald interval (Brown, Cai and DasGupta 2001). Extensions of the Bayesian approach to unequal 
probability sampling show similar improved frequency properties over design-weighted and model-assisted 
approaches (Chen, Elliott and Little 2010). 
 
4.5. Model-assisted estimation. The prevailing paradigm of design-based inference is model-assisted, where model 
predictions are calibrated to yield estimates that are design-consistent (Brewer 1979, Isaki and Fuller 1982) and 
hence protected from model misspecification -- note that this use of the term “calibration” differs from the 
calibration in CB. This popular approach uses regression models on auxiliary data to increase the efficiency of 
design-based inferences while retaining the randomization distribution as the basis for inference. My principle 
reservation concerning the method is that, by modifying the prediction estimator to improve its robustness, the 
resulting estimator can involve parameter estimates from conflicting models held simultaneously. It is better to base 
inferences on direct predictions from a model that yields design consistent estimates. Since design consistency is a 
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rather weak property, this is not hard to do in many problems (Firth and Bennett, 1998). In short, model-assisted 
estimators represent for me a rather ad-hoc way of making a design-based estimator robust to model 
misspecification, whereas a more direct approach is simply to choose a more robust model. The following example 
(Little 2007) illustrates this point. 
 
Example 4. Generalized Regression in an equal probability sample based on a regression model without an 
intercept. Opsomer et al. (2007) applied the model-assisted approach to incorporating auxiliary information into an 
equal probability sample, where the regression models for prediction did not include the constant term. Let y  and x  

denote sample means of an outcome Y and a vector of covariates X, ˆ
x   the vector of least squares slopes for the 

regression of Y on X with no intercept, and X  the population mean of X. The resulting regression prediction of the 

mean of Y is ˆ
x X , and the average residual for the sampled cases is ˆ

xy x , so the generalized regression 

estimator has the form 

GREG 0 0
ˆ ˆ ˆ ˆ ˆ ˆ{ } ,  wherex x x xY X y x X y x            . 

 

Observe that the slopes ˆ
x  are estimated under the regression model that assumes no intercept, but the inclusion of  

0̂   in GREGY  implies a model that includes an intercept. If an intercept is needed, it should be included in the model 

when estimating ˆ
x .  Since any linear model with an intercept yields design-consistent predictions under equal 

probability sampling (Firth and Bennett 1998), there is then no need for calibration at all in this situation. Other 
examples of model inconsistency in model-assisted estimates from unequal probability samples are given in Little 
(1983).  
 
Is this a “counter-example”? It depends on the extent to which one cares about the logical consistency of estimators 
from the viewpoint of the prediction -- since the CB perspective views the task of statistics as fundamentally to 
provide posterior predictive inference for unknowns given the data, it places considerable weight on this aspect. A 
more pragmatic CB argument against model-assisted approaches is that the resulting confidence intervals do not 
achieve the nominal coverage, particularly when the sampling weights applied to the residuals have extreme values 
(Zheng and Little 2004, 2005; Yuan and Little 2007, 2008; Chen, Elliott and Little 2010). 
 
Another comment about model-assisted estimation is that it is a tool for incorporating auxiliary data, but not 
effective for small area estimation –hierarchical Bayes models like (4) above that incorporate shrinkage via random 
effects are more suited to this purpose. For example, in the setting of model (4) with equal probability sampling, the 
form of the generalized regression estimator with predictions based on the regression of Y on X is 
 

GREG, 0 1 0 1 1
ˆ ˆ ˆ ˆ ˆ ( )a a a a a a ay X y x y X x            , 

 
which incorporates information in the auxiliary variable X, but does not incorporate shrinkage to the regression 
estimate combined over areas, as in the CB estimate (5). This lack of shrinkage also applies to unequal probability 
samples, where the model-assisted approach calibrates the regression estimate by adding weighted residuals. For 
discussions of model and design-based approaches to survey weights, see Little (2004, 2008) and Gelman (2007). 
 
4.6. Methods for propagating imputation uncertainty. Single imputation methods lead to confidence intervals 
that are too narrow (that is have less than nominal coverage) when imputation uncertainty is not propagated. There 
are model-based and design-based approaches to correcting this problem. A Bayesian approach is multiple 
imputation, where multiple data sets are generated with different sets of draws from the predictive distribution of the 
missing values (Rubin 1987, 1996). A design-based approach is to apply replicate methods such as the jackknife 
(Rao 1996, Fay 1996), with different imputations in each replicate; these methods are design-based in spirit but 
“pseudo” randomization- based in fact, since they rely on an assumption that, within classes, nonresponse is in effect 
a form of random sampling. Multiple imputation does not yield consistent estimates of variance under particular 
forms of model misspecification (Meng 1994; Rao 1996; Fay 1996; Robins and Wang 2000; Kim et al., 2006). 
Modelers accept model specification as inevitable, and seek multiple imputation models that capture key features of 
the population – they also point to simulations suggesting that multiple imputation under plausible models generally 
yields good or conservative confidence coverage. 
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I view this as a proxy fight for the more basic underlying philosophical differences. At the Census Bureau it has led 
to a form of stalemate, where single imputation methods that fail to propagate imputation error continue to be 
applied, even though both of the alternatives mentioned above are clearly superior to the status quo. 
 
4.7. DMC-induced constrictions of the total survey error paradigm. Total survey error (TSE) centers around a 
decomposition of mean squared error of a survey estimate into components of sampling error, and nonsampling 
errors such as frame errors, errors due to nonresponse, response errors, editing and interviewer effects. In a recent 
review of TSE, Groves and Lyberg (2010) note that the explicit attention to the decomposition of errors in TSE, and 
the separation of phenomena affecting statistics in various ways, provides a central conceptual basis for the field of 
survey methodology. At the same time, they point out the following weaknesses with the current TSE paradigm:  
 
(i) quantitative measurement of many components is burdensome and lagging;  
(ii) the TSE paradigm has not led to enriched error measurement in practical surveys;  
(iii) assumptions required for some estimators of error terms are frequently not true;  
(iv) there is a mismatch between existing error models and theoretical causal models of the error mechanisms;  
(v) there is a misplaced focus on descriptive statistics; and  
(vi) there is a failure to integrate error models developed in other fields.  
 
I believe that a primary source of these weaknesses is the design-based tradition of survey inference, making it 
difficult to harmonize in a single inference the design-based approach for sampling errors and model-based approach 
needed for non-sampling errors. An explicitly model-based CB representation of the TSE concept, drawing heavily 
on Rubin’s unified concepts of causal inference and missing data (Rubin 1974), addresses many of the failures in 
implementing the TSE paradigm.  
 
4.8. Incorporating information from Alternative Data Sources. The modeling paradigm of CB is particularly 
relevant to problems of combining data across data sources. The design-based paradigm can incorporate known 
administrative data, using methods such as poststratification or raking, and methods from multiple frame probability 
samples, but is less suited to combining information from probability samples with information from non-probability 
sources, or sources where non-sampling errors need to be modeled. The topic is too broad for an extended treatment 
here, but see Elliott and Little (2005), Schenker and Raghunathan (2007), and Raghunathan et al. (2007) for 
examples of Bayesian approaches to combining information from different data sources. 
 
5. Two Census Bureau Applications 
 
While DMC is the prevailing philosophy of statistics at the Census Bureau, there is an increasing acceptance of 
model based, and even Bayesian methods. In this section I describe two small area estimation topics that are being 
addressed from a CB perspective.  
 
Example 5. Small Area Income and Poverty Estimates. The U.S. Census Bureau Small Area Income and Poverty 
Estimates (SAIPE 2011) are intercensal estimates of selected income and poverty statistics for school districts, 
counties, and states, for the administration of federal programs and the allocation of federal funds to local 
jurisdictions.  Data from administrative records, intercensal population estimates, and the decennial census are 
combined with direct estimates from the American Community Survey to provide consistent and reliable single-year 
estimates. Direct survey estimates (from the Current Population Survey, CPS, or more recently from the American 
Community Survey, ACS) are too unreliable for many areas, and a small area model is applied to integrate survey 
data with data from administrative records and the previous census long form. The basic form of the model (Fay and 
Herriott 1979) is 
 

2 2

| , ~ ( , )

| , ~ ( , )

a a a a a

a a

y v N v

N x

 

    
, 

 
where ya is the direct survey estimate of population quantity θi for area a, va is the sampling variance of ya, xa is a 
vector of regression variables for area a with associated regression parameters β, and σ2 is the variance of small area 
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random effects. Initially the variances va and σ2  were treated as known, but more recent formulations have included 
prior distributions as part of  a Bayesian formulation.  
 
In particular, for the State poverty rate model for ages 5-17, the direct survey estimates yi were originally from CPS, 
but since 2005 are from the ACS; the regression variables in xi include a constant term and, for each state, pseudo-
poverty rate for children from tax return data 
 
Table 1. Posterior Variances from SAIPE State Model for 2004 CPS 5-17 Poverty Rates 
Results for four states 

State na va Var(Ya|data) Approx. wt. on Ya in E(Ya|data) 

CA 5,834 1.1 0.8 .61 
NC 1,274 4.6 2.0 .28 
IN 904 8.1 2.0 .18 
MS 755 12.0 3.9 .13 

 
 
Tax “nonfiler rate”, SNAP (food stamp) participation rate, previous census estimated state 5-17 poverty rate, or 
residuals from regressing previous census estimates on other elements of xi for the census year. Table 1 presents 
CPS sample size, direct variance  va and posterior variance for four states from the State Model for 2004 CPS 5-17 
Poverty Rates. For California (CA), the sample size is large, most of the weight (61%) is on the direct estimate, and 
the posterior variance (0.8) is not much smaller than the direct variance (1.1). For Mississippi (MS), the sample size 
is small, most of the weight (87%) is on the model prediction, and the posterior variance (3.9) is much smaller than 
the direct variance (12.0).  The other two states lie between these two.  
 
Example 6: Language Provisions of the Voting Rights Act. The Voting Rights Act determines that certain 
counties and townships are required to provide language assistance at the polls. Determinations are based in part on 
there being more than 5 percent of voting age citizens in a  political district who are members of a single language 
minority and are limited English Proficient (LEP). The Census Bureau is charged with determining which 
jurisdictions are covered under the Act, and until now have used direct estimates from Long Form Decennial Census 
Data. With the replacement of the long form, estimates are henceforward to be based on the smaller ACS, and some 
districts have small ACS samples and hence have direct estimates with unacceptably high variance. The 2011 
determinations use a small area model that combines information from the 2005-2009 ACS and 2010 Census data. 
To see why a model is needed, let P be the proportion of voting age citizens in a voting district who are members of 
a single language minority and are LEP. Suppose the ACS was a simple random sample; then a direct estimate of P 
is the sample proportion m/n, where n is the sample count of voting age citizens in a district, and m is the number of 
minority voting age citizens in that district who are LEP. For a small District A with n=105, m=5, m/n < 0.05, and 
the 5% provision would not apply, but for a District B with n=105, m=6, m/n > 0.05 and the 5% provision would 
apply. That is, a change in the sample count of just one changes the outcome. A small area model is applied to 
increase the precision of the estimate, and hence the reliability of the outcome.  
 
The approach to the “more than 5%” provision was to build a district level regression model to predict P based on 
variables in the ACS, and Census 2010 counts of minority groups.  Classify districts into classes with similar 
predicted P based on the model -- predictive mean stratification; and then within classes, apply a hierarchical 
random-effects model that pulls the direct ACS estimate of P towards the average P for districts in that class; and 
compare the model estimate with 5% for this aspect of the determination. Comparison of the Bayesian model 
estimates with the direct ACS estimates indicated large gains in precision, particularly for the small voting districts. 
The predictive mean stratification is used to reduce dependency on model assumptions, since the regression model is 
used to group similar jurisdictions rather than to create direct predictions. See Joyce et al. (2012) for more details. 
 
6. Conclusions 
 
I have argued for a paradigm shift in official statistics, away from the current DMC towards Bayesian models that 
are geared to yield inferences with good frequentist properties. My design-based statistical colleagues raise two 
principal objections to this viewpoint.  
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First, the idea of an overtly model-based, even worse Bayesian, approach to probability surveys is not well received, 
although the calibrated part of CB welcomed for its focus on good randomization properties. Models are mistrusted, 
and should be avoided at all costs! My view is simply that classical design-based methods do not provide the 
comprehensive approach needed for the complex problems that increasingly arise in official statistics: small area 
estimation, nonresponse and response errors, file linkage and combining information across probabilistic and non-
probabilistic sources. Judicious choices of well-calibrated models are needed to tackle such problems. Attention to 
design features and objective priors can yield Bayesian inferences that avoid subjectivity, and modeling assumptions 
are explicit, and hence capable of criticism and refinement.  
 
The second objection is that Bayesian methods are too complex computationally for the official statistics world, 
where large numbers of routine statistics need to be computed correctly and created in a timely fashion. It is true that 
current Bayesian computation may seem forbidding to statisticians familiar with simple weighted statistics and 
replicate variance methods. Sedransk (2008), in an article strongly supportive of Bayesian approaches, points to the 
practical computational challenges as an inhibiting feature. I agree that much work remains to meet this objection, 
but I do not view it as insuperable. Research on Bayesian computation methods has exploded in recent decades, as 
have our computational capabilities. To take as an example my research area of missing data, methods have evolved 
from simple imputation methods, to maximum likelihood for general patterns of missing data via iterative 
algorithms like EM, to Bayesian multiple imputation methods for increasingly complex models based on Gibbs’ 
sampling, now widely available in standard software (Little and Rubin 2002; Little 2011). Bayesian models have 
been fitted to very large and complex problems, in some cases much more complex than those faced in the official 
statistics world.  
 
Part of the problem here is a lack of familiarity with modeling and Bayesian methods among government 
statisticians, since unfamiliar tasks often easier than they seem. Clearly government statisticians need to be skilled in 
statistical computation, a better marriage is needed between computer science and statistics, and infrastructure is 
needed to bring more sophisticated analysis methods into production environments. These are challenging problems, 
but I do not see them as insuperable, if there is recognition that they are worth tackling.  
 
The move to a more overt modeling approach means that government agencies need to recruit and train statisticians 
who are adept in modeling (and yes, Bayesian) methods, as well as being familiar with survey sampling design. 
Survey sampling needs to be considered a part of mainstream statistics, in which Bayesian methods play an 
increasingly important role. A CB philosophy would improve statistical output, and provide a common philosophy 
for statisticians and researchers in substantive disciplines such as economics and demography. A strong research 
program within government statistical agencies, including cooperative ties with statistics departments in academic 
institutions, would also foster examination and development of the viewpoints advanced in this article (Lehtonen, 
Pahkinen and Sarndal 2002, Lehtonen and Särndal 2009). 
 
Change is also needed before statisticians are recruited into government agencies. Currently Bayesian statistics is 
absent or “optional” in many programs for training MS and even Ph.D. statisticians, and Ph.D. statisticians are 
trained with very little exposure to Bayesian ideas, beyond a few lectures in a theory sequence dominated by 
frequentist ideas. This is clearly incompatible with the rising prominence of Bayes in science, as evidenced by the 
strong representation of modern-day Bayesians in science citations (Science Watch 2002).  
 
The examples in Section 5 are for me an encouraging sign that the Census Bureau is more open to the CB approach I 
favor, at least in the context of small area estimation. I would like to see it applied more generally to other problems, 
such as the treatment of missing data, and applications that require combining across data sources, which are 
becoming more urgent with the attempts to incorporate administrative record data into Census Bureau products. 
Aside from the statistical benefits of modeling, direct substitution of administrative records may be problematic 
because of privacy and legal issues, but using the administrative records as predictors in a model to impute missing 
records is often more acceptable (Zanutto and Zaslavsky 2001). 
 
When it comes to consumers of statistics, Bayes is not a part of most introductory statistics courses, so most think of 
frequentist statistics as all of statistics, and are not aware that Bayesian inference exists. Defenders of the status quo 
claim that Bayesian inference is too difficult to teach to students with limited mathematical ability, but my view is 
that these difficulties are overrated. The basic idea of Bayes Theorem can be conveyed without calculus, and 
Bayesian methods seem to me quite teachable if the emphasis is placed on interpretation of models and results, 
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rather than on the inner workings of Bayesian calculations. Indeed, Bayesian posterior credibility intervals have a 
much more direct interpretation than confidence intervals, as noted above. Frequentist hypothesis testing is no picnic 
to teach to consumers of statistics, for that matter! 
 
Formulating useful statistical models for real problems is not simple, and students need more instruction on how to 
fit models to complicated data sets. We need to elucidate the subtleties of model development. Issues include the 
following: (a) models with better fits can yield worse predictions than methods that fit the observed data better; (b) 
all model assumptions are not equal, for example in regression lack of normality of errors is secondary to 
misspecification of the error variance, which is in turn secondary to misspecification of the mean structure; (c) If 
inferences are to be Bayesian, more attention needs to be paid to the difficulties of picking priors in high-
dimensional complex models, objective or subjective. 
 
Models are imperfect idealizations, and hence need careful checking; this is where frequentist methods have an 
important role. These methods include Fisherian significance tests of null models, diagnostics that check the model 
in directions that are important for the target inferences, and model-checking devices like posterior predictive 
checking and cross-validation. Such diagnostics are well known for regression, but perhaps less developed and 
taught for other models, particularly when complex survey designs are involved.  
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Figure 1A: Discontinuity between design-based and model-based inference in DMC. 
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Figure 1B: Hierarchical Bayes estimate for area a is weighted combination of direct estimate ay  and 

regression estimate ˆa . Weight on direct estimate aw  increases with sample size n  
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