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Introduction: What Does Fitting a Regression Model with Survey Data Mean?  

 

The standard “design-based” framework for fitting a regression model to survey data was introduced by Fuller 

(1975) for linear regression and by Binder (1983) more generally. This framework treats the finite population as a 

realization of independent trials from a conceptual population. A maximum likelihood regression estimator could, in 

principle, be estimated from the finite-population values. In the design-based framework either that uncalculated 

finite-population estimate or its limit as the finite population grows infinitely large is treated as the target of 

estimation given a complex sample drawn from the finite population.  

 

That is not what most analysts think they are estimating when they fit regression models. We will explore an 

alternative model-based framework for estimating regression models introduced in Kott (2007) that is sensitive to 

the complex sampling design and to the possibility that the usual model assumptions may not hold in the population. 

Under this framework some of the methods develops in the design-based framework, such as fitting weighted 

estimating equations and sandwich variance estimation, are retained but their interpretations change. Only a few of 

the ideas in this paper are new. The goal here is to collect those ideas and put them into a conceptual framework.   

 

A Design-Sensitive Approachlternative Approach 
 

We start by defining the standard model in the following manner:  

 
                        yk = f(xk

Tβ) + εk,   where E(εk |xk) = 0,                                     (1) 

 

where yk is the dependent variable being modeled, while xk is a vector of variables, one of which is 1. Observe that 

 

            f(xk
Tβ) = xk

Tβ          for linear regression, 

                  = exp(xk
Tβ)/[1 + exp(xk

Tβ)] for logistic regression, and  

                  = exp(xk
Tβ)    for Poisson regression.  

There are few additional assumptions about the distribution and variance structure of the εk in this robust version of 

the model underpinning a regression analysis until the issue of estimating the variance of a estimator of  arises.  

 

Although apparently very general, there is key restriction imposed by the standard model in equation (1): E(εk) = 0 

no matter the value of xk. This assumption can fail and the standard model not be appropriate in the population being 

analyzed. For example, suppose yk = xk
2 in the population. The linear model yk =  + xk + εk when fit to the 

population fails as a standard model because E(εk |xk)  0.         

 

A further generalized is the extended model under which E(εk |xk) = 0 in equation (1) is replaced by E(xkεk) = 0.  

That is to say, εk has mean zero unconditionally (i.e., E(εk) = 0) and is uncorrelated with each of the nonconstant 

components of xk. Unlike the standard model, the more general extended model rarely fails. Indeed, in the above 

example,  = Cov(xk
2, xk)/ Var(xk) and  = E(xk

2)  E(xk) so long as xk the first three central moments of xk are finite. 

 

The standard version of simple linear model without an intercept, yk = xk + εk, is not of the form specified by 

equation (1). It similarly assumes E(εk |xk) = 0. The extended version of the model assumes only E(εk) = 0.            

 
 



The Weighted Estimating Equation 

With an independent identically distributed (iid) population U of N elements, it is easy to see that 

                               1lim ( )T
k k kU

p N y f   
  x β x 0  

under the extended model. Given a complex sample S with weights {wk}, each (nearly) equal to the inverse of the 

corresponding element’s selection probability,   

                              1lim ( )T
k k k kS

p N w y f   
  x β x 0                           (2) 

 

under mild conditions on the sampling design. The parenthetical “nearly” needs to be added when the weights 

include adjustments for unit nonresponse or coverage errors in the frame which the analysts assumes have been 

accounted for in an asymptotically unbiased manner. Calibration weight adjustments for statistical efficiency are 

another reason to add “nearly.”:  

 

The wk are inserting into equation (2) in case E(εk |xk, wk)  0 a situation in which the weights are said to be 

nonignorable in expectation. Full ignorability of the weights obtains when εk |xk is independent of wk. 

 
Whether the standard or extended model is assumed to hold in the population, solving for b in the weighted 

estimating equation (Godambe and Thompson 1974) 

 

                           S wk[yk  f(xk
Tb)]xk = 0                                 (3)   

 

provides a consistent estimator for  under mild conditions because    

 

                                 
1

'( ) ,T
k k k k k k kS S

w f w


    
  b β x x x                             

 

where k is between xk
Tb and xk

Tβ thanks to the mean-value theorem. The mild conditions include that  

 

                                       A =N-1S wkf '(k)xkxk
T  

 

and its limit are positive definite, while N-1S wkxkk converges to 0 as the sample grows arbitrarily large.     

                                               

It is not hard to show that U[yk  f(xk
Tb)]xk= 0 is the maximum-likelihood (ML) estimating equation of the 

population under the iid linear regression model and under logistic regression with independent observations (i.e., 

sampled elements). Nevertheless, the solution to equation (3) is not ML given only sample values when the weights 

vary or the εk within primary sampling units are correlated. Instead, it is referred to as pseudo-ML (Skinner 1989).    

The Cumulative Logistic ModelA Distinction Without a Difference? 

More generally, the pseudo-ML estimating equation in Binder is 

 

                              
'( )

( ) .
T

Tk
k k k kS

k

f
w y f

v
  
 

x b
x b x 0  

 

For logistic, Poisson, and ordinary least squares (OLS) linear regression, f '(xk
T)/vk = 1. This equality may not hold 

for general least squares (GLS) linear regression, however even when the elements are uncorrelated. For 

uncorrelated GLS and known or speculated vk up to a constant, one could choose gk in wkg = wkgk to limit the 

variability of wkvkgk under the standard model.  

 Cumulative Logistic Model 



The cumulative logistic model is a multinomial logistic regression model for ordered data, where there are L 

categories with a natural ordering (e.g., always, frequently, sometimes, never). Being in the first category is assumed 

to fit a logistic model. Being in either the first or second category is assumed to fit a logistic model.  

Being in the first, second, or third category is assumed to fit a logistic model, and so forth  

The Pronal-Odds Model 
The generalized cumulative logistic model is (splitting out the intercept from the rest of the covariates) 

 

           e x p ( )
( | )   f o r  1 , . . . , 1 ,

1 e x p ( )

k
k k

k

E y L





  

 

x β
x

x β
             (4)             

 

and ylk  = 1 if k is in one of the first l categories, 0 otherwise. When l  =  for all categories, but each category has 

its own intercept), the cumulative logistic model is is also called a proportional-odds model.  
 

Finding the b that satisfies the estimating equation:  

                            
1

( ) for 1,..., 1T
k k kS

k

w y f L
 

      
 

 x b 0
x

                (5)  

 
can be used for the generalized cumulative logistic model or the proportional odds model. This is not the pseudo-ML 

estimating equation in the surveylogistic routine in SAS/STAT 14.1 (SAS Institute Inc. 2015), the logistic routine in 

SUDAAN 11 (Research Triangle Institute 2012) or the gologit2 routine in STATA (Williams 2005). Only the last 

goes beyond the beyond the proportional-odds model.   

 

When the standard model fails, that is, when  

 

                        
e x p ( )

| 0   f o r  1, . . . , 1,
1 e x p ( )

k
k k

k

E y L



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x β
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the solution for the b in equation (4) may not be estimating the same parameter as the pseudo-ML PML
b . This is not 

a bad thing. Unlike the pseudo-ML solution, the solution to equation (4) has this reasonable property:    

 

                       1 1 ( ) for 1,..., 1T
k k k kS S

N w y N w f L     x b ,  

 

This is a property retained at the asymptotic limit of b but not necessarily the asymptotic limit of PML
b . That is to 

say,  

 

                        1 1lim lim ( ) for 1,..., 1T
k k kU U

N w y N f L     x β  

 

where l is the estimand of bl . The equality need not hold when  l  is replaced by the estimand of PML
b .  

 

Modified Weights Under the Standard Model 

 

Pfeffermann and Sverchkov (1999) showed that under the standard model one can replace the wk with the modified 

weights wkg
 
= wk

 
gk where gk is a function of the components of xk computed to reduce as much as possible the 

variability of the wkg
 
in the hopes of decreasing the variability of the linear regression-coefficient estimates under an 

iid model. Kott (2007) pointed out that Pfeffermann’s and Sverchkov’s result is a simple repercussion of the 

assumption that E(εk|xk) = 0. We can see that by replacing wk in equations (2) and (3) by wkg. 

 

Interestingly, Pfeffermann’s and Sverchkov’s result also justifies the often reviled practice of deleting sampled 

observations with any missing values from a regression analysis (see, for example, Wilkinson et al. 1999). Under the 



standard model, listwise deletion leads to consistent coefficient estimates if the probability that a sampled unit 

remains in the listwise-deleted sample is a function of the components of xk, say pk (and the probability an item 

value is missing is thus 1 – pk). As a result, the true inverse-selection-probability weight is wk/pk, and a potential 

modified weight is wk = wk/pk  pk. Not only can item nonresponse be missing at random, independent-variable 

values can be missing not at random so long as their missingness does not depend on yk| xk. Moreover, not even the 

function form of pk need not be known.   

feffermann-Sverchkov WeightsMeans and Domain Means 
Observe that the estimation of a mean or a domain mean can be put in the form of a linear-regression model (and 

often a logistic-regression model). The standard model can never fail in this case nor can it fail for the group-mean 

model, where the population is divided into groups and each group has its own mean. Nevertheless, the modified 

weights can’t be used to reduce variability because gk will be constant within the domain/group. Moreover, the 

weights need not be ignorable in expectation.  

 
Variance Estimation When First-Stage Stratification is Ignorable 

 

Variance estimation given a stratified multistage sample can be tricky unless a simplifying assumption is made.  

Usually, the assumption is that after primary sampling units (PSUs) had been separated into mutually exclusive 

strata, the PSUs were randomly selected with replacement within strata before elements were selected independently 

within sampled PSU using some probability-sampling mechanism. Instead, we assume for now that the xkεk are 

uncorrelated across PSUs, have bounded variances, and are independent of the first-stage stratification, which is to 

say the first-stage stratification is ignorable. The sample design is as above except that PSUs could have been 

selected without replacement. In fact, if there were selected with replacement, no PSU was been selected twice.  

 

Under mild additional asymptotic assumptions, which revolve around the number of sampled PSUs being 

sufficiently large while the dimension of xk is bounded, a design-based variance estimator for b is  
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lternative Weighting Schemes 

Under the standard model, the wk in both equations (5) and (6) can be replaced by wkg. 

 

The key to both variance estimators is that the Ehj =
hj k k kk S w  x have mean 0 and are uncorrelated across PSUs. 

The use of robust sandwich-type variance estimation allows the variance matrices of the Ehj be unspecified. The 

additional asymptotic assumptions allow ek = k  f '(k)xk
T(b) to used in place of k within the Ehj, and D to 

replace the probability limit of A = N-1S wkf '(k)xkxk
T. 

 

Additional variations of the variance estimator in equation (5) can be made if the analyst is willing to assume that 

the k are uncorrelated across secondary sampling units or across elements. The more components there are in xk, the 

more reasonable the assumptions that the k are uncorrelated across elements (or another higher-stage of sampling 

like arousing unit in a household-based sample of individuals) and the more reasonable the assumption that the first-

stage stratification is ignorable.   

  

 



Variance Estimation When First-Stage Stratification is Not Ignorable 

 

When the first-stage stratification is not ignorable, it is tempting to follow design-based theory and argue under 

probability-sampling theory the Ehj are independent and have a common mean within strata, justifying the use of the 

variance estimator in equation (6) but not (7). This argument is only valid when the first-stage PSU’s are indeed 

selected with replacement (meaning the same PSU can be selected twice) or their selection can reasonably be 

approximated by that design. When the first-stage sample is drawn without replacement, strata with few PSUs in 

both the sample and population can void the near unbiasedness of the variance estimator (invoking large-sample or 

large- population properties when the corresponding sample or population is not large is dubious). Moreover, as 

Graubard and Korn (2002) point out, even under with-replacement sampling of PSUs, equation (6) provides a nearly 

unbiased variance estimator only when the relative sizes of the nonignorable strata are fixed as the population grows 

arbitrarily large. Otherwise, there is a component of the variance of b that equation (6) fails to capture: the random 

number of elements within each first-stage stratum when the number of strata is bounded and the mechanism 

generating the strata when it is not.   

 

Degrees of Freedom 

 

When fitting a regression model with survey, design-based practice often treats the diagonals of the variance 

estimator in equation (6) as if they had a chi-squared distribution with n – H degrees of freedom (Lohr 2010, p. 438). 

There is no justification for this under probability sampling theory, which relies entirely on the asymptotic normality 

of b. This questionable practice clearly comes from var(b) in equation (6) looking a bit like the multiple of a chi-

squared statistic with n – H degrees of freedom.   

In fact, if the Ehj were all independent and identically distributed multi-dimensional normal random variables, then 

the diagonals of var(b) would indeed be close to a multiple of a chi-squared statistic with n – H degrees of freedom. 

Unfortunately, the Ehj in practice are not likely to be normally distributed, and even if they are close enough to being 

normal for them to be treated as such, they rarely have the same variances.  

A model-based approach in Kott (1994) assumes that the first-stage stratification is ignorable and the k (as opposed 

to the Ehj) are normally distributed, have mean zero and a common variance and are uncorrelated. The approximate 

relative variance of a diagonal of var(b)  var(N-1 DEhj), call it r, can be calculated under those assumptions. 

Using Satterthwaite approximation, the effective degrees of freedom for the corresponding component of b would 

then be 2/r and could vary across coefficients. Although this procedure is itself more than a little dubious, when 

employed in the generation of t statistics will likely produces better coverages intervals than conventional design-

based practice. Better yet would be to compute alternative measures of the effective degrees of freedom under 

different assumptions about the variance structure of the k within a sensitivity analysis.     

Tests for Choosing Weights 

 

Suppose an analyst wants to compare whether b and b', each computed with its own sets of weights, are estimating 

the same thing. For example, to test whether weights are ignorable in expectation, the analyst could compare b 

computed using inverse-selection-probability weights with b' computed using equal weights. If the vectors are not 

significantly different, then weights might be ignored. Similarly, b could be compared with a different b' computed 

using modified weights. This would provide an indirect test of the standard model, since using the modified weights 

produces a nearly unbiased estimator for  under the standard model but not more generally.   

 

Under the null hypothesis that b and b' are estimating the same thing,      
12 ' ' '

T
r


      b b var b b b b is 

asymptotically chi-squared with r degrees of freedom, r is the dimension of xk, and var(.) is a variance estimator 

analogous to the one in either equation (4) or (5). A popular design-based test statistic for whether b and b' are 

estimating the same thing is  
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                      (8) 

 

where d is the nominal degrees of freedom, that is, n  H. The F test in equation (8) is called the adjusted Wald F 



test in SUDAAN, which also offers a host of variations.   

                                            

This test is relatively easy to conduct using popular design-based software in the following manner. Two copies are 

made for each element in the data set. Both are assigned to the same PSU.  The first copy is assigned the weight 

used to compute b and the second the weight used to compute b'. The row vector of covariates xk
T

 of the regression 

is replaced by (xk
T

  0T) for the first copy and by (xk
T

 ) for the second.  The regression coefficient is then 

                                         ,   
 

  
 

b
d

b' b
              

and testing whether b'  b is significantly different from 0 becomes a straight-forward regression exercise using 

design-based software, such as SUDAAN 11 (Research Triangle Institute 2012) and the survey procedures in 

SAS/STAT 14.1 (SAS Institute Inc. 2015).   

 

A design-sensitive model-based approach allows each component of d to have its own model-based effective 

degrees of freedom in a t test and then uses a conservative Bonferroni adjustment to test whether the components in 

the bottom half of d are significantly different from 0 (i.e., the smallest p value among the components is compared 

to /r when testing for significance at the  level). Using a Bonferroni-adjusted t test in place of an F test when 

analyzing a regression with complex survey data was previously advocated by Korn and Graubard (1990).                                                                                                

  

Another Possible Test for the Standard Model 

 

Here is another test of whether the standard model is consistent with the sampled elements. Estimate b using 

inverse-selection-probability weights or modified weights. Compute fk = f(xk
Tb). Apply “design-based” software to 

the linear model: E(yk) =  + fk + fk
2

 . If g the estimator for  is significantly different from 0, then the standard 

model fails because E(k|xk) is clearly not 0 (fk being a function of xk, and the “design-based variance estimator being 

robust to the heterscedasticity of the yk    fk  fk
2). That g is not significantly different from 0 is necessary for 

the standard model to hold but not sufficient to establish that it holds. Observe that when the standard model holds a 

the estimator for  should also not be significantly different from 0. This suggests testing whether a and g are 

simulatenously not signirficantly different from 0.     

 

Concluding Remarks 

 
The goal of this paper has been to show that some of the techniques in conventional design-based practice can be 

justified in a design-sensitive model-based frame. Nevertheless, although inserting weights into an estimating 

equations is often justified, it is not always necessary, depending on what assumptions are made. In addition, 

although the sandwich-type variance estimator used in design-based practice (equation (6)) may be fairly robust, it 

does not fully account for first-stage stratification when first-stage stratification is not ignorable. When it is 

ignorable, a simpler variance estimator (equation (7)) can be used that is likely more stable (i.e., it diagonals have 

less relative variance). Other, even more stable, variance estimators can be constructed by assuming that element 

errors are not correlated across smaller levels of clustering than PSUs (e.g., across households but not within 

households).  

 

In practice the standard and extended models described here rarely produce estimators different from the popular 

pseudo-ML methodology. An exception to this is the cumulative logistic model. Ironically, it is a simple matter to 

employ SAS/STAT or SUDAAN to estimate a generalized cumulative logistic model using the methodology 

discussed here even though the analogous pseudo-ML estimator cannot be computed with either package. To do so 

one treatd the L-1 equations involving the same element as if they different elements from the same PSU and runs a 

(binary) logistic regression, relying on the sandwich-like design-based variance estimators to handle the correlation 

of the equations. Testing the “parallel lines” assumption of the proportional-odd model that all the l  =  in 

equation (4) is straightforward.     

 

One interesting repercussion of assuming the standard model is that listwise deletion turns out to be a nearly 

unbiased technique for regression analysis so long as the probability an element is deleted from the analysis does not 

depend on the value of the dependent variable given the independent variables.             

Concluding Remarks 

The variance estimators in equations (6) and (7) were derived using Taylor-series linearization. Replication 



techniques such as a jackknife, bootstrap, and often balanced repeated replication will often produce asymptotically 

equivalent variance estimators. See, for example, Krewski and Rao (1981). Although the probability-sampling 

proofs in the literature assumes with-replacement sampling within first-stage strata, model-based analogues are 

straight forward. When comparing weighting methods, the replicates need to be constructed analogously for the two 

methods. 

 

The problem with making assumptions is that they can be wrong. Survey statisticians have, for the most part, 

accepted a design-based framework that effectively focuses on robustness by relying on as few model assumptions 

as possible. That framework is not particularly helpful when the goal is the fit a regression model. Moreover, it can 

be misleading when survey statisticians graft a finite-sample techniques like degrees of freedom onto what is 

actually an asymptotic theory.  

 

The paper has reviewed statistical tests for determining whether inverse-selection-probability weights are ignorable 

in expectation when fitting a regression model and, if so, whether the standard model nonetheless holds allowing the 

use of modified weights. Design-based practice has always been to fear that such tests will incorrectly fail to see that 

the weights are not ignorable or that the standard model fails. In fact, the standard model, like all models, is almost 

never completely true. In the same vein, inverse-selection-probability weights are rarely entirely ignorable. Still, the 

standard model may be useful, and the efficiency gains from ignoring the weights may overwhelm the resulting bias. 

We need better tools for making such determinations. A design-sensitive model-based approach may be the key to 

developing those tools. 
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