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1. Introduction 
 
Researchers often use logistic regression to isolate the effect of specific factors on a dichotomous outcome, 
controlling for confounders (Hosmer and Lemeshow, 1989; Lee 1981). Results from logistic regression models can 
be presented in a variety of ways, such as an odds ratio, a risk ratio, or a risk difference.  Odds ratios are easily 
calculated from the logit model and thus are commonly reported.  Although many researchers consider the risk ratio 
to be a more intuitively understood and interpreted measure of relative effect, accurate conversion from the odds 
ratio to the risk ratio has proven to be difficult (Holland, 1989; Greenland and Holland, 1991; Zhang and Yu, 1998; 
McNutt et al., 2003). To create a practical solution to this longstanding issue, Kleinman and Norton (2009) 
developed and validated regression risk analysis (RRA), a simple and general method to estimate adjusted risk ratios 
(ARR) and adjusted risk differences (ARD) directly from nonlinear models.  Using logistic regression as an 
example, they showed that regression risk analysis produces precise and accurate ARR and ARD estimates, both for 
simple data sets and ones with substantial confounding.  Regression risk analysis reproduces Mantel-Haenszel ARR 
and ARD estimates for logit models with categorical confounders.  It also produces highly accurate results for 
models with continuous covariates and does not experience computational difficulties that other methods do in such 
scenarios. 
 
This paper extends the work of Kleinman and Norton (2009) in several important ways.  First, we demonstrate that 
regression risk analysis is applicable not only to logistic regression, but also to other nonlinear probability models, 
such as the probit and multinomial and ordered logit models, and to cases involving complex survey design.  
Second, we provide an exemplar model, with data from the National Survey of Children’s Health (NSCH), to show 
that ARR and ARD estimates can be easily generated using our Stata program.  Third, we discuss two methods for 
measuring variance for regression risk analysis: the delta method and bootstrapping. 
 
Fourth, we examine the effect of regression risk analysis on the choice of measure and implications of that choice 
within the context of comparative effectiveness research.  Because regression risk analysis generates accurate risk 
ratio and risk difference estimates easily from nonlinear models, it presents researchers with a choice of how to 
report their results.  This led us to contemplate what would be desirable practice for deciding between these 
measures.   We noticed that in studies indirectly comparing two or more treatments, the ranking of treatments may 
vary across measure choices. That is, results reported as odds ratios may rank treatments differently than results 
reported as risk ratios.  We have termed this phenomenon rank reversal.  In this paper, we will describe the 
circumstances in which rank reversal does and does not occur and provide an example using a recent meta-analysis 
by Matchar and colleagues (2008). We will also discuss the implications of rank reversal for research and policy 
decisions and recommend best practice.  
 
 
2. Methods 
 
Logistic regression is a common approach to estimating models with binary dependent variables. When running 
such models, results can be reported in various ways, with the most common being odds ratios, risk ratios, and risk 
differences. Odds ratios are accurate measures of relative effect size if interpreted correctly. However, research 



shows that confusion can arise when understanding odds ratios, and many people mistakenly interpret these results 
as risk ratios or relative risks (Klaidman 1990; Teuber 1990; Altman, Deeks, and Sackett, 1998; Bier 2001). The 
unintuitive nature of the odds ratio and frequent confusion with the risk ratio has resulted in many articles calling for 
the end of reporting odds ratios (e.g. Spiegelman and Hertzmark, 2005).  
 
As researchers, two primary goals in our work are to first conduct high-quality research and second to communicate 
the results of our research accurately and effectively. The adjusted risk ratio (ARR) and adjusted risk difference 
(ARD) are measures that satisfy these goals and can be estimated simply after running a logistic regression model. 
 
 
2.1 Estimating adjusted risk ratios and adjusted risk differences 
 
Kleinman and Norton (2009) developed the adjusted risk ratio (ARR) and adjusted risk difference (ARD) as valid 
measures of relative and absolute risk. The measures are calculated using two predicted probabilities from the model 
of interest. In the case of a binary explanatory variable of interest, one predicted probability is estimated when the 
covariate of interest equals the non-exposed value (typically zero) while the other predicted probability is estimated 
when the covariate of interest equals the exposed value (typically one). For example, if the explanatory variable of 
interest is exposure to some treatment or risk, then after estimating the model one can predict the predicted 
probability as if exposed or as if unexposed for each observation.  The ARR and ARD are calculated using these 
predicted probabilities averaged across the entire sample. The ARR is the ratio of the mean predicted probabilities, 
and the ARD is the difference of the mean predicted probabilities.  
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These equations can be generalized to apply to continuous covariates, subsamples of interest, and weights from 
complex survey data. When calculating ARRs and ARDs for continuous variables of interest, any two policy-
relevant values can be chosen over which to estimate these measures. Estimating ARRs and ARDs for a particular 
subsample also changes the sample size over which the predicted probabilities are calculated. Introducing complex 
survey weights alters the equations for ARRs and ARDs such that the individual predicted probabilities are weighted 
accordingly before being averaged across the sample. 
 
Calculating ARRs and ARDs is not restricted to logistic regression with a binary outcome. Our research has 
extended the application of these measures to both logit and probit models with binary, multinomial, and ordered 
outcomes. Below, we focus on the estimation of ARRs and ARDs after running a multinomial logistic regression as 
a representative example.  
 
 
2.2 Multinomial logistic regression 
 
Multinomial logit models have outcomes that consist of multiple, discrete, and unordered categories. Examples of 
this type of outcome are kinds of health insurance, modes of transportation, and college majors. In the multinomial 
logit model, the formula for the probabilities of each category for categories j = 1,…, J – 1 is 
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and the probability of the Jth category is 
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After running a multinomial logit model, we can compute J distinct ARRs and ARDs, one for each outcome 
category.  Compute the predicted probabilities for any or all of the outcome categories, changing the explanatory 
variable of interest as described in section 2.1.  Then take the ratio for the ARR or the difference for the ARD. 
 
 
2.3 Complex survey design 
 
Complex survey design affects coefficient estimation and their standard errors. In turn, complex survey design 
affects ARRs, ARDs, and their standard errors. Incorporating elements such as stratification, clustering, and 
weighting in the estimation of a model are necessary to generate accurate measures of ARRs and ARDs. 
 
 
3. Calculating ARRs and ARDs after running nonlinear models 
 
In this section we will use data from the National Survey of Children’s Health (NSCH) to demonstrate the 
calculation and interpretation of ARRs and ARDs after running a multinomial logit model. It is important to note 
that these models are for illustrative purposes only, and the reader is not to infer causality from the results from these 
simple models. 
 
A program created for Stata generates estimates of ARRs, ARDs, and delta-method standard errors for covariates of 
interest after running a specified model. Our program automatically incorporates complex survey design, estimates 
these measures for subsamples of interest, and runs for logit and probit models with binary, multinomial, and 
ordered outcomes. This Stata program is available upon request. 
 
 
3.1 NSCH data 
 
The National Survey of Children’s Health (NSCH) is sponsored by the Child and Maternal Health Bureau of the 
U.S. Department of Health and Human Services. This telephone survey is administered nationwide by the National 
Center for Health Statistics using the State and Local Area Integrated Telephone Survey (SLAITS) and collects 
health and health care information about children under 18 years old. First administered in 2003, this survey is 
conducted every four years.  
 
We use the 2007 NSCH to illustrate the calculation and interpretation of adjusted risk ratios (ARR) and adjusted risk 
differences (ARD) in a multinomial logistic regression. In our model the outcome of interest is the primary location 
where the sampled child receives health care (“usc” in our model, representing usual source of care). We modified 
this variable such that the four most prevalent locations were maintained as separate locations, and we dropped all 
other locations (consisting of less than one percent of the responses). The primary explanatory variable of interest is 
the child’s type of health insurance. In the NSCH, insurance status is divided into private insurance, public 
insurance, and no insurance. Approximately 66 percent of the sample has private insurance, 26.8 percent of the 
sample has public insurance, and 7.2 percent are uninsured.  
 
The set of explanatory variables in our model includes the health insurance variables and a basic set of demographic 
variables. We construct age categories to correspond to children in different developmental and educational phases. 
Children up to age four consist of one category, children ages five to eleven create the second age category, and 
children ages twelve to seventeen make up the final category. Individuals report their race as being white, black, 
multi-racial, or other. Due to a sizeable number of individuals not reporting their race, a separate variable is 
constructed that denotes the race variable is missing for those observations. The race and ethnicity variables are 
constructed similarly; these variables equal one if the child is identified as part of a particular race or ethnicity and 
equals zero otherwise. The resulting sample size of variables with non-missing values on the variables of interest is 
86,913 observations. 
 



The NSCH was administered with a complex sampling structure. Observations were stratified at the state level, and 
the primary sampling unit is the household. Probability weights are used in the analysis to generate a sample that is 
nationally representative (Blumberg et al., 2007).  The following tables show summary statistics for the explanatory 
variables and then for the dependent variable. 
 
 
-------------------------------------------------------- 
             |       Mean        Min        Max 
-------------+------------------------------------------ 
     ins_pub |   .2862582          0          1 
     ins_uni |   .0808009          0          1    
     age5_11 |   .3813833          0          1 
    age12_17 |   .3422308          0          1 
      female |   .4902354          0          1 
     race_bl |   .1440758          0          1 
  race_multi |   .0494847          0          1 
    race_oth |   .0522108          0          1   
race_missing |    .092276          0          1 
    hispanic |   .1873219          0          1 
 
-------------------------------------------------------- 
 
 
. tab usc 
 
            Place of health care |      Freq.     Percent        Cum. 
---------------------------------+----------------------------------- 
               1 Doctor's office |     68,219       78.49       78.49 
       2 Hospital emergency room |      1,184        1.36       79.85 
3 Hospital outpatient department |      1,880        2.16       82.02 
       4 Clinic or health center |     15,630       17.98      100.00 
---------------------------------+----------------------------------- 
                           Total |     86,913      100.00 
 
 
3.2 Multinomial logit model 
 
We estimate a multinomial logistic model to predict the probability of each of four types of usual sources of care, as 
a function of the insurance status and demographics.  Because there are four categorical outcomes, the model 
estimates three parameters for each explanatory variable. 
 
 
. svy: mlogit usc i.ins_pub i.ins_uni age5_11 age12_17 i.female race_bl race_multi 
race_oth race_missing hispanic 
(running mlogit on estimation sample) 
 
Survey: Multinomial logistic regression 
 
Number of strata   =        51                  Number of obs      =     86913 
Number of PSUs     =     86913                  Population size    =  68905676 
                                                Design df          =     86862 
                                                F(  30,  86833)    =     47.33 
                                                Prob > F           =    0.0000 
 
------------------------------------------------------------------------------ 
             |             Linearized 
         usc |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 



1_Dr’s office|  (base outcome) 
-------------+---------------------------------------------------------------- 
2_Hosp ER    | 
   1.ins_pub |   1.142589   .2066544     5.53   0.000      .737548     1.54763 
   1.ins_uni |   1.992841   .2199382     9.06   0.000     1.561764    2.423918 
     age5_11 |   .1875998   .1922636     0.98   0.329    -.1892351    .5644347 
    age12_17 |   .3488113   .1748101     2.00   0.046     .0061851    .6914375 
    1.female |   .0495236   .1536241     0.32   0.747    -.2515783    .3506254 
     race_bl |   1.433909   .1779922     8.06   0.000     1.085045    1.782772 
  race_multi |  -.0516816   .2692711    -0.19   0.848    -.5794506    .4760875 
    race_oth |   1.031731   .4342249     2.38   0.018      .180654    1.882808 
race_missing |   .6750487   .3171608     2.13   0.033     .0534164    1.296681 
    hispanic |   .9825168   .2229067     4.41   0.000     .5456216    1.419412 
       _cons |  -5.313072   .1761959   -30.15   0.000    -5.658414    -4.96773 
-------------+---------------------------------------------------------------- 
3_Hosp OPD   | 
   1.ins_pub |   .5343329   .1416113     3.77   0.000      .256776    .8118898 
   1.ins_uni |   .8920434   .2027603     4.40   0.000     .4946349    1.289452 
     age5_11 |    .035345   .1694218     0.21   0.835    -.2967202    .3674103 
    age12_17 |   .2538672   .1727587     1.47   0.142    -.0847384    .5924727 
    1.female |   .0106483   .1328544     0.08   0.936    -.2497452    .2710418 
     race_bl |   1.184395   .1304534     9.08   0.000     .9287077    1.440083 
  race_multi |   1.142207   .3137291     3.64   0.000     .5273005    1.757113 
    race_oth |   1.727319   .2241178     7.71   0.000      1.28805    2.166588 
race_missing |   1.220938   .2280895     5.35   0.000     .7738846    1.667992 
    hispanic |    .261648   .1345126     1.95   0.052    -.0019954    .5252915 
       _cons |  -4.514257   .1871833   -24.12   0.000    -4.881134   -4.147379 
-------------+---------------------------------------------------------------- 
4_Clinic/Cntr| 
   1.ins_pub |   1.017277   .0571559    17.80   0.000     .9052515    1.129301 
   1.ins_uni |   1.296523   .0825516    15.71   0.000     1.134722    1.458323 
     age5_11 |  -.0454325   .0642795    -0.71   0.480    -.1714198    .0805548 
    age12_17 |    .130426   .0649003     2.01   0.044     .0032219      .25763 
    1.female |   .1138293   .0513247     2.22   0.027     .0132332    .2144253 
     race_bl |     .31956   .0660122     4.84   0.000     .1901767    .4489433 
  race_multi |   .0091794   .1241035     0.07   0.941    -.2340624    .2524213 
    race_oth |   .4852826   .1148665     4.22   0.000     .2601453    .7104199 
race_missing |   .6239109   .1039805     6.00   0.000     .4201101    .8277117 
    hispanic |   1.005137   .0758997    13.24   0.000     .8563738    1.153899 
       _cons |  -2.463513   .0593282   -41.52   0.000    -2.579796    -2.34723 
------------------------------------------------------------------------------ 
 
The coefficients from a multinomial model are hard to interpret directly. Instead, we calculate ARRs and ARDs for 
three covariates: public insurance, uninsured, and female. For each covariate, we calculate an ARR and ARD for 
each outcome. The delta-method standard errors are shown in parentheses.  For the following output, the usual 
source of care for outcome 1 is the Doctor’s office, for outcome 2 js the Hospital Emergency Room, for outcome 3 
is a Hospital Outpatient Department, and for outcome 4 is a Clinic or Community Health Center. 
 
. adjrr ins_pub 
ARR(outcome 1) = 0.8067  (0.0108) 
ARD(outcome 1) = -0.1605 (0.0094) 
ARR(outcome 2) = 2.1979  (0.4253) 
ARD(outcome 2) = 0.0170  (0.0047) 
ARR(outcome 3) = 1.2918  (0.1721) 
ARD(outcome 3) = 0.0061  (0.0032) 
ARR(outcome 4) = 2.0180  (0.0837) 
ARD(outcome 4) = 0.1373  (0.0091) 
 
. adjrr ins_uni 
ARR(outcome 1) = 0.6935  (0.0195) 
ARD(outcome 1) = -0.2455 (0.0159) 



ARR(outcome 2) = 4.1614  (0.8167) 
ARD(outcome 2) = 0.0497  (0.0108) 
ARR(outcome 3) = 1.5064  (0.2887) 
ARD(outcome 3) = 0.0112  (0.0060) 
ARR(outcome 4) = 2.1451  (0.1102) 
ARD(outcome 4) = 0.1846  (0.0163) 
 
. adjrr female 
ARR(outcome 1) = 0.9817  (0.0090) 
ARD(outcome 1) = -0.0144 (0.0072) 
ARR(outcome 2) = 1.0163  (0.1491) 
ARD(outcome 2) = 0.0003  (0.0029) 
ARR(outcome 3) = 0.9845  (0.1259) 
ARD(outcome 3) = -0.0004 (0.0029) 
ARR(outcome 4) = 1.0853  (0.0406) 
ARD(outcome 4) = 0.0145  (0.0066) 
 
 
To interpret the insurance variables, we must remember that the omitted insurance variable in the multinomial model 
is private insurance; the results for the other insurance variables are understood with respect to this reference 
category. The results for the publicly insured and the uninsured have similar patterns as to where individuals receive 
care, with a larger effect size observed among the uninsured compared to the publically insured children.  
 
The interpretation of the ARRs for outcome 1 (care typically received at a doctor’s office) by insurance status is 
straightforward. Those publicly insured are 19.33% less likely to receive care at a doctor’s office than those with 
private insurance. On average, children who are uninsured are 30.65% less likely to receive care in this setting than 
the privately insured, holding all else equal. In terms of absolute differences, children who are publicly insured 
receive care from doctor’s offices 16.05 percentage points less often than those privately insured. In comparison, the 
uninsured receive care from doctor’s offices 24.55 percentage points less often than those privately insured.  One 
can readily estimate that the uninsured receive care at private doctor’s offices 8.5 percentage points (16.05 – 24.55) 
less often than those with public insurance. 
 
The uninsured and the publicly insured receive care far more frequently in hospital emergency rooms and clinics and 
health centers than the privately insured. On average, uninsured children receive care in hospital emergency rooms 
approximately 316% more often than privately insured children. In comparison, publicly insured children receive 
care in this setting approximately 120% more often than privately insured children. 
 
In examining the results from the variable female, girls and boys receive care at similar rates in hospital settings. 
Differences in location of care by sex emerge at doctor’s offices (outcome 1) and clinics and health centers 
(outcome 4). Girls receive care from clinics and health centers 8.53% more than boys, on average. In comparison, 
boys receive care from doctor’s offices 1.83% more than girls. In terms of absolute differences, girls are 1.45 
percentage points more likely to go to clinics and health centers and they are 1.44 percentage points less likely to go 
to doctor’s offices than boys, on average. 
 
 
3.3 Complex survey design 
 
In the above model, we specified the complex survey design of the NSCH before estimating the results. Identifying 
the stratification, sampling structure, and weighting of observations affects the model’s results. If we had run the 
previous model without the survey commands, we would have estimated the following results for the ARRs and 
ARDs for the public insurance variable. 
 
. adjrr ins_pub 
ARR(outcome 1) = 0.8412  (0.0046) 
ARD(outcome 1) = -0.1292 (0.0038) 
ARR(outcome 2) = 2.6797  (0.1773) 



ARD(outcome 2) = 0.0165  (0.0014) 
ARR(outcome 3) = 1.4690  (0.0763) 
ARD(outcome 3) = 0.0090  (0.0013) 
ARR(outcome 4) = 1.6600  (0.0265) 
ARD(outcome 4) = 0.1037  (0.0037) 
 
 
Without incorporating the complex survey design, publicly insured children are estimated to receive care in doctor’s 
offices, hospital emergency rooms, and hospital outpatient departments more frequently than they do. Publicly 
insured children also appear to receive care in clinics and health centers less frequently than the surveyed population 
does. In many cases, these differences are quite sizeable. Without adjusting for the appropriate survey 
characteristics, results may lead to different conclusions and policy implications than the data actually suggest.  
 
 
4. Variance estimation 
 
Although the literature has identified several standard ways to present results from logistic regression, typically as 
odds ratios or risk ratios, it has not settled on a way to calculate the variance associated with risk ratio estimates. We 
describe our investigation of the relative advantages of the two most common approaches to measuring variance as it 
applies to regression risk analysis: the delta method, which models a first-order Taylor-series expansion, and 
bootstrapping, a numeric (non-model based) approach to estimating variance. 
 
The delta method expands a function of a random variable about its mean with Taylor-series approximation. The 
variation generated by the delta method comes from two sources: uncertainty in the estimated coefficients and 
differences in the distribution of covariates across the sample.  Most major software programs automatically 
compute delta-method standard errors.  When they are not automatically computed, the analyst must compute them, 
and this method can take time to debug but is fast to run. 
 
In contrast, bootstrapping is relatively simple to program but can take a long time to run, particularly for large data 
sets.  Confidence intervals are estimated directly from the bootstrap and may be asymmetric; standard errors may be 
estimated from the width of the confidence interval.  Asymmetric confidence intervals are more appropriate when 
the probabilities are close to zero or one, when ceiling and floor effects bind. 
 
As noted the ARR has two sources of variationuncertainty in the estimated coefficients and differences in the 
distribution of covariates across the samplethat added together represent the total variance.  The first component 
can be calculated from the covariance matrix of the estimated logistic regression coefficient and a vector that 
accounts for non-linearities in the ARR formula. The second component is the variance of the predicted risk given 
exposure, normalized by the average predicted risk given no exposure.  
 
In future work, we will use Monte Carlo simulations that incorporate variation and confounding to demonstrate and 
specify the advantages and disadvantages of these two approaches to estimating uncertainty and variance for 
adjusted risk measures from regression risk analysis. We will also propose decision rules to help investigators 
choose how to calculate and describe uncertainty in specified circumstances.   
 
 
5. Rank Reversal 
 
Patient-centered outcomes research helps people make informed health care decisions and allows their voice to be 
heard in assessing the value of health care options. This research answers patient-focused questions:  
 
 “Given my personal characteristics, conditions and preferences, what should I expect will happen to me?”  
 “What are my options and what are the benefits and harms of those options?”  
 “What can I do to improve the outcomes that are most important to me?”  
 “How can the health care system improve my chances of achieving the outcomes I prefer?”  
 



To answer these questions, patient-centered outcomes research assesses the benefits of interventions.  It focuses on 
outcomes that people notice and care about such as survival, function, symptoms, and health-related quality of life; 
and incorporates a wide variety of settings and diversity of participants (see www.pcori.org).  
 
Comparative effectiveness research is the generation and synthesis of evidence that compares the benefits and costs 
of alternative methods to prevent, diagnose, treat, and monitor a clinical condition or to improve the delivery of care.  
The purpose of comparative effectiveness research is to assist consumers, clinicians, purchasers, and policy makers 
to make informed decisions that will improve health care at both the individual and population levels (see 
www.iom.org).  The key elements of this definition are the comparison of effective interventions, the study of 
patients in typical day-to-day clinical care, and the aim of tailoring decisions to the needs of individual patients. 
 
Indirect comparisons are used when one wishes to compare the relative size of the effect of an intervention used in 
two studies, each of which has its own baseline or comparison.  Indirect comparisons are frequently used in 
comparative effectiveness research to rank order the magnitude of effect of several interventions.  We will show that 
such rankings are dependent upon the choice of outcomes measure beyond what has been previously described.  The 
rank order is dependent upon the specific choice of relative measure, odds ratio versus risk ratio.  We will 
demonstrate that this phenomenon occurs and explain it. 
 
Even with more well-controlled evidence, decisions must still balance benefits, risks and costs in the context of 
uncertainty. Uncertainty lingers for a variety of reasons: samples in trials are non-representative; there is limited 
patient heterogeneity; many studies are underpowered for secondary endpoint; and there is often a short duration of 
follow-up.  Attempting to diminish these uncertainties with statistical control most commonly employs logistic 
regression reporting odds ratios even though patient-centered outcomes are often common. 
 
The phenomenon that we describe—rank reversal—does not occur when comparisons are direct, that is when 
treatments A and B are compared to same Baseline (Risk 0).  In this circumstance there will be no rank reversal.  
This property can be proved with basic calculus as the first derivatives must all be positive with constant Risk 0.  In 
contrast, for indirect comparisons in which Treatment A is compared to Baseline in Study 1 and Treatment B is 
compared to Baseline in Study 2, rank reversal may occur.   
 
We can demonstrate this phenomenon using pairs of probabilities displayed on a unit square.  First create a unit 
square and identify any point on that square.  We can then identify distinct lines for which the value of RR, OR, and 
RD remain constant while passing through that point.  We call these line isoquants.  The figure demonstrates 
isoquants through the point (0.4, 0.6). 
 



 

 
 
As you can see, these lines carve the plane into several distinct areas. Each area is defined by the level of agreement 
between the ranks as determined by a comparison of the rank of (0.4, 0.6) and the points in that area using the 
various measures, RR, OR, and RD.  
 
Area  RR  RD  OR  Agree?  

A  R1 R1 R1 Yes 

B  R1 R1 R0 OR different 

C  R1 R0 R1 RD different 

D  R1 R0 R0 RR different 

E  R0 R1 R1 RR different 

F  R0 R1 R0 RD different 

G  R0 R0 R1 OR different 

H  R0 R0 R0 Yes 
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Plot constant RR, RD, and OR through (0.4, 0.6)



 
When summing the areas on the unit square, we find that 90.5 % of the area has no rank reversal, while the OR is 
the exception for 2.4%, the RR for 4.3%, and the RD for 2.4%. 
 
Moving from simulations to real findings, we consider an excellent meta-analysis from the Annals of Internal 
Medicine (Matchar et al., 2008).  This meta-analysis compiles the findings from a number of studies and 
summarizes them in a way that allows us to calculate both the odds and the risk ratio and the risk difference. We 
present these data highlighting five exemplar studies.   
 
The table below clearly illustrates the phenomenon of rank reversal in the ranking of the effect size of the study.  We 
recognize that such comparisons represent an artificial construct, but the mathematics of rank reversal is the same 
regardless of whether one wishes to compare the effect size shown by a study or the effectiveness of various 
interventions.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
We extend current understanding by demonstrating empirically how and when the selection of measure may affect 
decisions that are based on evidence regarding comparative effectiveness or impact.  Although our findings are 
equally applicable in public health and policy settings, for the sake of clarity we use the language and choose 
examples from comparative effectiveness research.   
 
What has not been fully appreciated, and what we have demonstrated herein, is the extent to which the rank order of 
interventions may flip, depending upon whether or not they are ranked by RR or OR, and describe how and when 
the RD offers a complementary perspective.  This is not simply a mathematical curiosity. Clinical and other 
decisions are being made every day, relying upon comparative effectiveness research that orders the effectiveness of 
treatments in ways that invite misinterpretation.   
 
In conclusion, we demonstrate that the choice of measure is consequential when indirectly comparing effect size.  
Even when restricting ourselves to relative measures, the rank order may depend upon the choice of OR or RR, with 
the RD providing complementary information.  We demonstrate these phenomena in the interest of enhancing the 
understanding of CER studies, for the failure to appreciate rank reversal may lead to incorrect conclusions. 
 
 
6. Conclusion 
 
Regression risk analysis (RRA) generates intuitive and straightforward measures for interpreting the results from 
logistic regressions. In this paper, we expand on the work of Kleinman and Norton (2009) by extending RRA to 

Study RD RR OR OR 
Rank 

RR Rank RD Rank 

Mogensen 0.10 1.14 1.76 1 5 1 
 

Saito 0.09 1.38 1.57 2 2 3 
 

Hasford 0.10 1.24 1.51 3 3 1 
 

Larochelle 0.03 1.39 1.43 4 1 7 
 

Fogari 0.08 1.15 1.38 5 4 4 
 



other nonlinear probability models and models with complex survey design. Using data from the National Survey of 
Children’s Health, we present the results of a simple multinomial logit model and illustrate the calculation and 
interpretation of ARRs and ARDs in this context. We emphasize the ease of estimating these measures using our 
Stata program. When calculating ARRs and ARDs, consideration must be given to the variance estimation 
associated with these measures. We examine two variance estimation approaches, the delta method and 
bootstrapping, and propose future research to simulate the relative benefits of each option. Finally, we demonstrate 
the importance of the risk measure chosen when communicating results where indirect comparisons are estimated. 
The potential for rank reversal, a phenomenon where the ranking of treatments is contingent upon the choice of risk 
measure, must be acknowledged when reporting results from comparative effectiveness research and making 
conclusions. RRA provides important tools for interpreting the results from nonlinear models. Understanding the 
benefits of these measures as well as identifying scenarios where treatment rankings may be sensitive to the measure 
chosen will result in more informed researchers and higher quality research.    
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